Nuprl Lemma : icompact-length-nonneg

[I:Interval]. r0 ≤ |I| supposing icompact(I)


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-length: |I| interval: Interval rleq: x ≤ y int-to-real: r(n) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a icompact: icompact(I) and: P ∧ Q i-length: |I| uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: rsub: y i-nonvoid: i-nonvoid(I) exists: x:A. B[x] rbetween: x≤y≤z guard: {T}
Lemmas referenced :  radd-preserves-rleq rsub_wf right-endpoint_wf left-endpoint_wf less_than'_wf i-length_wf int-to-real_wf nat_plus_wf icompact_wf interval_wf rleq_wf radd_wf rminus_wf uiff_transitivity rleq_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both i-member-finite rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination because_Cache hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality applyEquality natural_numberEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_functionElimination

Latex:
\mforall{}[I:Interval].  r0  \mleq{}  |I|  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_46_57
Last ObjectModification: 2015_12_27-PM-11_47_38

Theory : reals


Home Index