Nuprl Lemma : rsum_single

[n:ℤ]. ∀[x:{n..n 1-} ⟶ ℝ].  {x[k] n≤k≤n} x[n])


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsum_wf int_seg_wf decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma lelt_wf real_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int-to-real_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf eq_int_wf assert_of_eq_int neg_assert_of_eq_int radd_wf subtract_wf subtract-add-cancel intformand_wf int_formula_prop_and_lemma intformeq_wf int_formula_prop_eq_lemma req_weakening req_functionality rsum_unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality addEquality natural_numberEquality hypothesis because_Cache dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality lambdaFormation equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity setElimination rename

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\{n..n  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}n\}  =  x[n])



Date html generated: 2017_10_03-AM-08_57_48
Last ObjectModification: 2017_07_28-AM-07_37_44

Theory : reals


Home Index