Step
*
1
of Lemma
Inorm-non-neg
1. I : {I:Interval| icompact(I)}
2. f : I ⟶ℝ
3. mc : f[x] continuous for x ∈ I
4. |f[x]|(x∈I) ≤ sup{|f[x]||x ∈ I}
5. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ |f[x]|(x∈I)) ∧ ((sup{|f[x]||x ∈ I} - e) < x))))
⊢ r0 ≤ sup{|f[x]||x ∈ I}
BY
{ (Assert icompact(I) BY
(D 1 THEN Unhide THEN Auto)) }
1
1. I : {I:Interval| icompact(I)}
2. f : I ⟶ℝ
3. mc : f[x] continuous for x ∈ I
4. |f[x]|(x∈I) ≤ sup{|f[x]||x ∈ I}
5. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ |f[x]|(x∈I)) ∧ ((sup{|f[x]||x ∈ I} - e) < x))))
6. icompact(I)
⊢ r0 ≤ sup{|f[x]||x ∈ I}
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. f : I {}\mrightarrow{}\mBbbR{}
3. mc : f[x] continuous for x \mmember{} I
4. |f[x]|(x\mmember{}I) \mleq{} sup\{|f[x]||x \mmember{} I\}
5. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:\mBbbR{}. ((x \mmember{} |f[x]|(x\mmember{}I)) \mwedge{} ((sup\{|f[x]||x \mmember{} I\} - e) < x))))
\mvdash{} r0 \mleq{} sup\{|f[x]||x \mmember{} I\}
By
Latex:
(Assert icompact(I) BY
(D 1 THEN Unhide THEN Auto))
Home
Index