Nuprl Lemma : Inorm-non-neg
∀[I:{I:Interval| icompact(I)} ]. ∀[f:I ⟶ℝ]. ∀[mc:f[x] continuous for x ∈ I].  (r0 ≤ ||f[x]||_I)
Proof
Definitions occuring in Statement : 
Inorm: ||f[x]||_I, 
continuous: f[x] continuous for x ∈ I, 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
interval: Interval, 
rleq: x ≤ y, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
Inorm: ||f[x]||_I, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
sup: sup(A) = b, 
and: P ∧ Q, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
label: ...$L... t, 
sq_stable: SqStable(P), 
squash: ↓T, 
icompact: icompact(I), 
i-nonvoid: i-nonvoid(I), 
exists: ∃x:A. B[x], 
upper-bound: A ≤ b, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
range-sup-property, 
rabs_wf, 
i-member_wf, 
real_wf, 
continuous-abs-subtype, 
less_than'_wf, 
rsub_wf, 
Inorm_wf, 
int-to-real_wf, 
nat_plus_wf, 
continuous_wf, 
rfun_wf, 
set_wf, 
interval_wf, 
icompact_wf, 
sq_stable__icompact, 
rset-member-rrange, 
zero-rleq-rabs, 
rleq_transitivity, 
range-sup_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
setEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
natural_numberEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[mc:f[x]  continuous  for  x  \mmember{}  I].    (r0  \mleq{}  ||f[x]||\_I)
Date html generated:
2016_10_26-AM-09_55_39
Last ObjectModification:
2016_08_15-PM-09_20_11
Theory : reals
Home
Index