Nuprl Lemma : Inorm-non-neg

[I:{I:Interval| icompact(I)} ]. ∀[f:I ⟶ℝ]. ∀[mc:f[x] continuous for x ∈ I].  (r0 ≤ ||f[x]||_I)


Proof




Definitions occuring in Statement :  Inorm: ||f[x]||_I continuous: f[x] continuous for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ interval: Interval rleq: x ≤ y int-to-real: r(n) uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Inorm: ||f[x]||_I all: x:A. B[x] so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] prop: subtype_rel: A ⊆B sup: sup(A) b and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A implies:  Q false: False label: ...$L... t sq_stable: SqStable(P) squash: T icompact: icompact(I) i-nonvoid: i-nonvoid(I) exists: x:A. B[x] upper-bound: A ≤ b guard: {T} uimplies: supposing a
Lemmas referenced :  range-sup-property rabs_wf i-member_wf real_wf continuous-abs-subtype less_than'_wf rsub_wf Inorm_wf int-to-real_wf nat_plus_wf continuous_wf rfun_wf set_wf interval_wf icompact_wf sq_stable__icompact rset-member-rrange zero-rleq-rabs rleq_transitivity range-sup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality isectElimination applyEquality setElimination rename dependent_set_memberEquality hypothesis setEquality because_Cache productElimination independent_pairEquality natural_numberEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_functionElimination imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[mc:f[x]  continuous  for  x  \mmember{}  I].    (r0  \mleq{}  ||f[x]||\_I)



Date html generated: 2016_10_26-AM-09_55_39
Last ObjectModification: 2016_08_15-PM-09_20_11

Theory : reals


Home Index