Nuprl Lemma : rset-member-rrange
∀I:Interval. ∀[f:I ⟶ℝ]. ∀r:ℝ. ((r ∈ I) ⇒ (f[r] ∈ f[x](x∈I)))
Proof
Definitions occuring in Statement : 
rrange: f[x](x∈I), 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
rset-member: x ∈ A, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rrange: f[x](x∈I), 
rset-member: x ∈ A, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
prop: ℙ, 
uimplies: b supposing a
Lemmas referenced : 
req_weakening, 
i-member_wf, 
req_wf, 
real_wf, 
rfun_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
dependent_set_memberEquality, 
because_Cache, 
independent_isectElimination, 
productEquality
Latex:
\mforall{}I:Interval.  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}r:\mBbbR{}.  ((r  \mmember{}  I)  {}\mRightarrow{}  (f[r]  \mmember{}  f[x](x\mmember{}I)))
Date html generated:
2016_05_18-AM-09_08_27
Last ObjectModification:
2015_12_27-PM-11_31_00
Theory : reals
Home
Index