Nuprl Lemma : rset-member-rrange

I:Interval. ∀[f:I ⟶ℝ]. ∀r:ℝ((r ∈ I)  (f[r] ∈ f[x](x∈I)))


Proof




Definitions occuring in Statement :  rrange: f[x](x∈I) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rset-member: x ∈ A real: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q rrange: f[x](x∈I) rset-member: x ∈ A exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B so_apply: x[s] rfun: I ⟶ℝ prop: uimplies: supposing a
Lemmas referenced :  req_weakening i-member_wf req_wf real_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation dependent_pairFormation hypothesisEquality cut hypothesis independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality dependent_set_memberEquality because_Cache independent_isectElimination productEquality

Latex:
\mforall{}I:Interval.  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}r:\mBbbR{}.  ((r  \mmember{}  I)  {}\mRightarrow{}  (f[r]  \mmember{}  f[x](x\mmember{}I)))



Date html generated: 2016_05_18-AM-09_08_27
Last ObjectModification: 2015_12_27-PM-11_31_00

Theory : reals


Home Index