Nuprl Lemma : Inorm_wf
∀[I:{I:Interval| icompact(I)} ]. ∀[f:I ⟶ℝ]. ∀[mc:f[x] continuous for x ∈ I].  (||f[x]||_I ∈ ℝ)
Proof
Definitions occuring in Statement : 
Inorm: ||f[x]||_I
, 
continuous: f[x] continuous for x ∈ I
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Inorm: ||f[x]||_I
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
range-sup_wf, 
icompact_wf, 
rabs_wf, 
real_wf, 
i-member_wf, 
continuous-abs-subtype, 
continuous_wf, 
rfun_wf, 
set_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_set_memberEquality, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[mc:f[x]  continuous  for  x  \mmember{}  I].    (||f[x]||\_I  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-09_17_06
Last ObjectModification:
2015_12_27-PM-11_26_04
Theory : reals
Home
Index