Nuprl Lemma : continuous_wf
∀[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I, 
rfun: I ⟶ℝ, 
interval: Interval, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T
Definitions unfolded in proof : 
continuous: f[x] continuous for x ∈ I, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
implies: P ⇒ Q, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
rfun_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
i-member-approx, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
i-member_wf, 
int-to-real_wf, 
rless_wf, 
real_wf, 
sq_exists_wf, 
i-approx_wf, 
icompact_wf, 
nat_plus_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
natural_numberEquality, 
functionEquality, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
inrFormation, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-09_08_45
Last ObjectModification:
2016_01_17-AM-02_35_08
Theory : reals
Home
Index