Nuprl Lemma : range-sup-property
∀I:{I:Interval| icompact(I)} . ∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I.  sup(f[x](x∈I)) = sup{f[x]|x ∈ I}
Proof
Definitions occuring in Statement : 
range-sup: sup{f[x]|x ∈ I}
, 
continuous: f[x] continuous for x ∈ I
, 
rrange: f[x](x∈I)
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
sup: sup(A) = b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
pi1: fst(t)
, 
r-ap: f(x)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
rfun: I ⟶ℝ
, 
label: ...$L... t
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
range-sup: sup{f[x]|x ∈ I}
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_function, 
interval_wf, 
set_wf, 
equal_wf, 
i-member_wf, 
real_wf, 
rfun_wf, 
icompact_wf, 
sq_stable__i-member, 
r-ap_wf, 
rrange_wf, 
sup_wf, 
exists_wf, 
continuous_wf, 
all_wf, 
subtype_rel_self, 
sup-range
Rules used in proof : 
productElimination, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
setEquality, 
dependent_set_memberEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
hypothesisEquality, 
lambdaEquality, 
rename, 
setElimination, 
because_Cache, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
introduction, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.
    sup(f[x](x\mmember{}I))  =  sup\{f[x]|x  \mmember{}  I\}
Date html generated:
2018_05_22-PM-02_18_15
Last ObjectModification:
2018_05_21-AM-00_34_13
Theory : reals
Home
Index