Nuprl Lemma : range-sup-property

I:{I:Interval| icompact(I)} . ∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I.  sup(f[x](x∈I)) sup{f[x]|x ∈ I}


Proof




Definitions occuring in Statement :  range-sup: sup{f[x]|x ∈ I} continuous: f[x] continuous for x ∈ I rrange: f[x](x∈I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval sup: sup(A) b so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  pi1: fst(t) r-ap: f(x) exists: x:A. B[x] squash: T sq_stable: SqStable(P) uimplies: supposing a rfun: I ⟶ℝ label: ...$L... t prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T range-sup: sup{f[x]|x ∈ I} all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  subtype_rel_function interval_wf set_wf equal_wf i-member_wf real_wf rfun_wf icompact_wf sq_stable__i-member r-ap_wf rrange_wf sup_wf exists_wf continuous_wf all_wf subtype_rel_self sup-range
Rules used in proof :  productElimination functionExtensionality equalitySymmetry equalityTransitivity setEquality dependent_set_memberEquality imageElimination baseClosed imageMemberEquality independent_functionElimination dependent_functionElimination independent_isectElimination hypothesisEquality lambdaEquality rename setElimination because_Cache functionEquality isectElimination sqequalHypSubstitution introduction hypothesis extract_by_obid instantiate thin applyEquality cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.
    sup(f[x](x\mmember{}I))  =  sup\{f[x]|x  \mmember{}  I\}



Date html generated: 2018_05_22-PM-02_18_15
Last ObjectModification: 2018_05_21-AM-00_34_13

Theory : reals


Home Index