Nuprl Lemma : sup-range
∀I:{I:Interval| icompact(I)} . ∀f:I ⟶ℝ.  (f[x] continuous for x ∈ I 
⇒ (∃y:ℝ. sup(f(x)(x∈I)) = y))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
rrange: f[x](x∈I)
, 
icompact: icompact(I)
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
sup: sup(A) = b
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_apply: x[s]
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
Lemmas referenced : 
rrange_wf, 
totally-bounded-sup, 
icompact_wf, 
interval_wf, 
rfun_wf, 
continuous_wf, 
i-member_wf, 
real_wf, 
sq_stable__i-member, 
r-ap_wf, 
sq_stable__icompact, 
continuous-compact-range-totally-bounded
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
lambdaEquality, 
isectElimination, 
independent_isectElimination, 
setEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  sup(f(x)(x\mmember{}I))  =  y))
Date html generated:
2016_05_18-AM-09_15_30
Last ObjectModification:
2016_01_17-AM-02_37_53
Theory : reals
Home
Index