Nuprl Lemma : totally-bounded-sup

[A:Set(ℝ)]. (totally-bounded(A)  (∃b:ℝsup(A) b))


Proof




Definitions occuring in Statement :  totally-bounded: totally-bounded(A) sup: sup(A) b rset: Set(ℝ) real: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q all: x:A. B[x] prop: totally-bounded: totally-bounded(A) exists: x:A. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True cand: c∧ B false: False not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind pi1: fst(t) rtermAdd: left "+" right rtermMultiply: left "*" right rtermConstant: "const" rtermDivide: num "/" denom rtermSubtract: left "-" right pi2: snd(t) top: Top int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) uiff: uiff(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 nat_plus: + rless: x < y sq_exists: x:A [B[x]] real: subtype_rel: A ⊆B sq_stable: SqStable(P) decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] so_apply: x[s] subtract: m int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B upper-bound: A ≤ b rleq: x ≤ y rnonneg: rnonneg(x) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  least-upper-bound totally-bounded-implies-nonvoid totally-bounded-bounded-above rless_wf real_wf totally-bounded_wf rset_wf rdiv_wf rsub_wf int-to-real_wf rless-int rmul_preserves_rless assert-rat-term-eq2 rtermAdd_wf rtermVar_wf rtermMultiply_wf rtermConstant_wf rtermDivide_wf rtermSubtract_wf istype-int req_wf radd_wf rmul_wf rminus_wf itermSubtract_wf itermMultiply_wf itermConstant_wf rinv_wf2 itermVar_wf itermAdd_wf minus-one-mul-top istype-void subtype_base_sq int_subtype_base nequal_wf itermMinus_wf rless-implies-rless req-iff-rsub-is-0 rless_functionality req_transitivity radd_functionality rmul-rinv3 int-rinv-cancel real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma radd-preserves-rless rmaximum-select subtract_wf sq_stable__less_than nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf nat_plus_wf set_subtype_base less_than_wf add-associates add-swap add-commutes zero-add subtract-add-cancel decidable__lt istype-le istype-less_than rmaximum_wf int_seg_properties int_seg_wf rless-cases rset-member_wf upper-bound_wf le_witness_for_triv rabs-as-rmax rleq-rmax rabs_wf rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening_rless radd-preserves-rleq rleq_functionality req_weakening rmaximum_ub radd_functionality_wrt_rless2 rless_transitivity2 rleq_weakening req_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination because_Cache hypothesis productElimination universeIsType inhabitedIsType dependent_pairFormation_alt closedConclusion natural_numberEquality independent_isectElimination sqequalRule inrFormation_alt dependent_functionElimination independent_pairFormation imageMemberEquality baseClosed lambdaEquality_alt int_eqEquality approximateComputation productIsType minusEquality isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt instantiate cumulativity intEquality equalityTransitivity equalitySymmetry equalityIstype sqequalBase setElimination rename addEquality applyEquality imageElimination unionElimination inlFormation_alt functionIsTypeImplies

Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  sup(A)  =  b))



Date html generated: 2019_10_29-AM-10_44_10
Last ObjectModification: 2019_04_19-PM-06_31_24

Theory : reals


Home Index