Nuprl Lemma : totally-bounded-sup
∀[A:Set(ℝ)]. (totally-bounded(A) ⇒ (∃b:ℝ. sup(A) = b))
Proof
Definitions occuring in Statement : 
totally-bounded: totally-bounded(A), 
sup: sup(A) = b, 
rset: Set(ℝ), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
totally-bounded: totally-bounded(A), 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
cand: A c∧ B, 
false: False, 
not: ¬A, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
rtermAdd: left "+" right, 
rtermMultiply: left "*" right, 
rtermConstant: "const", 
rtermDivide: num "/" denom, 
rtermSubtract: left "-" right, 
pi2: snd(t), 
top: Top, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
nat_plus: ℕ+, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
real: ℝ, 
subtype_rel: A ⊆r B, 
sq_stable: SqStable(P), 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtract: n - m, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
upper-bound: A ≤ b, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
rge: x ≥ y, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
least-upper-bound, 
totally-bounded-implies-nonvoid, 
totally-bounded-bounded-above, 
rless_wf, 
real_wf, 
totally-bounded_wf, 
rset_wf, 
rdiv_wf, 
rsub_wf, 
int-to-real_wf, 
rless-int, 
rmul_preserves_rless, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermVar_wf, 
rtermMultiply_wf, 
rtermConstant_wf, 
rtermDivide_wf, 
rtermSubtract_wf, 
istype-int, 
req_wf, 
radd_wf, 
rmul_wf, 
rminus_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
rinv_wf2, 
itermVar_wf, 
itermAdd_wf, 
minus-one-mul-top, 
istype-void, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
itermMinus_wf, 
rless-implies-rless, 
req-iff-rsub-is-0, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
rmul-rinv3, 
int-rinv-cancel, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
radd-preserves-rless, 
rmaximum-select, 
subtract_wf, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nat_plus_wf, 
set_subtype_base, 
less_than_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
subtract-add-cancel, 
decidable__lt, 
istype-le, 
istype-less_than, 
rmaximum_wf, 
int_seg_properties, 
int_seg_wf, 
rless-cases, 
rset-member_wf, 
upper-bound_wf, 
le_witness_for_triv, 
rabs-as-rmax, 
rleq-rmax, 
rabs_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
radd-preserves-rleq, 
rleq_functionality, 
req_weakening, 
rmaximum_ub, 
radd_functionality_wrt_rless2, 
rless_transitivity2, 
rleq_weakening, 
req_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
productElimination, 
universeIsType, 
inhabitedIsType, 
dependent_pairFormation_alt, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
lambdaEquality_alt, 
int_eqEquality, 
approximateComputation, 
productIsType, 
minusEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
sqequalBase, 
setElimination, 
rename, 
addEquality, 
applyEquality, 
imageElimination, 
unionElimination, 
inlFormation_alt, 
functionIsTypeImplies
Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  sup(A)  =  b))
Date html generated:
2019_10_29-AM-10_44_10
Last ObjectModification:
2019_04_19-PM-06_31_24
Theory : reals
Home
Index