Nuprl Lemma : totally-bounded-bounded-above
∀[A:Set(ℝ)]. (totally-bounded(A) 
⇒ bounded-above(A))
Proof
Definitions occuring in Statement : 
totally-bounded: totally-bounded(A)
, 
bounded-above: bounded-above(A)
, 
rset: Set(ℝ)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
bounded-above: bounded-above(A)
, 
totally-bounded: totally-bounded(A)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
upper-bound: A ≤ b
, 
cand: A c∧ B
, 
guard: {T}
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
subtract: n - m
, 
sq_type: SQType(T)
Lemmas referenced : 
int-to-real_wf, 
rless-int, 
real_wf, 
rless_wf, 
nat_plus_wf, 
int_seg_wf, 
rset-member_wf, 
rabs_wf, 
rsub_wf, 
rset_wf, 
radd_wf, 
rmaximum_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract-add-cancel, 
decidable__lt, 
istype-le, 
istype-less_than, 
upper-bound_wf, 
rabs-bounds, 
rless_transitivity2, 
radd-preserves-rless, 
itermAdd_wf, 
squash_wf, 
true_wf, 
radd_comm_eq, 
subtype_rel_self, 
iff_weakening_equal, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
radd-preserves-rleq, 
rminus_wf, 
sq_stable__less_than, 
int_seg_properties, 
itermMinus_wf, 
rleq_functionality, 
real_term_value_minus_lemma, 
rmaximum_ub, 
subtype_base_sq, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
rless_transitivity1, 
rleq_weakening_rless
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
functionIsType, 
universeIsType, 
productIsType, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
dependent_pairFormation_alt, 
closedConclusion, 
independent_isectElimination, 
unionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
addEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
instantiate, 
universeEquality, 
cumulativity, 
intEquality
Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  bounded-above(A))
Date html generated:
2019_10_29-AM-10_43_50
Last ObjectModification:
2019_04_19-PM-06_12_46
Theory : reals
Home
Index