Nuprl Lemma : totally-bounded-bounded-above

[A:Set(ℝ)]. (totally-bounded(A)  bounded-above(A))


Proof




Definitions occuring in Statement :  totally-bounded: totally-bounded(A) bounded-above: bounded-above(A) rset: Set(ℝ) uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  bounded-above: bounded-above(A) totally-bounded: totally-bounded(A) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True exists: x:A. B[x] prop: nat_plus: + uimplies: supposing a decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] upper-bound: A ≤ b cand: c∧ B guard: {T} le: A ≤ B subtype_rel: A ⊆B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rless: x < y sq_exists: x:A [B[x]] real: sq_stable: SqStable(P) subtract: m sq_type: SQType(T)
Lemmas referenced :  int-to-real_wf rless-int real_wf rless_wf nat_plus_wf int_seg_wf rset-member_wf rabs_wf rsub_wf rset_wf radd_wf rmaximum_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract-add-cancel decidable__lt istype-le istype-less_than upper-bound_wf rabs-bounds rless_transitivity2 radd-preserves-rless itermAdd_wf squash_wf true_wf radd_comm_eq subtype_rel_self iff_weakening_equal rless_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma radd-preserves-rleq rminus_wf sq_stable__less_than int_seg_properties itermMinus_wf rleq_functionality real_term_value_minus_lemma rmaximum_ub subtype_base_sq set_subtype_base less_than_wf int_subtype_base add-associates add-swap add-commutes zero-add rless_transitivity1 rleq_weakening_rless
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt cut hypothesis sqequalHypSubstitution dependent_functionElimination thin introduction extract_by_obid isectElimination natural_numberEquality independent_functionElimination productElimination independent_pairFormation imageMemberEquality hypothesisEquality baseClosed functionIsType universeIsType productIsType setElimination rename because_Cache applyEquality dependent_pairFormation_alt closedConclusion independent_isectElimination unionElimination approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt addEquality imageElimination equalityTransitivity equalitySymmetry inhabitedIsType instantiate universeEquality cumulativity intEquality

Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  bounded-above(A))



Date html generated: 2019_10_29-AM-10_43_50
Last ObjectModification: 2019_04_19-PM-06_12_46

Theory : reals


Home Index