Nuprl Lemma : rset_wf

Set(ℝ) ∈ 𝕌'


Proof




Definitions occuring in Statement :  rset: Set(ℝ) member: t ∈ T universe: Type
Definitions unfolded in proof :  rset: Set(ℝ) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  real_wf all_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality functionEquality cumulativity cut lemma_by_obid hypothesis universeEquality sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality applyEquality

Latex:
Set(\mBbbR{})  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_18-AM-08_07_18
Last ObjectModification: 2015_12_28-AM-01_13_45

Theory : reals


Home Index