Nuprl Lemma : rset_wf
Set(ℝ) ∈ 𝕌'
Proof
Definitions occuring in Statement : 
rset: Set(ℝ)
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
rset: Set(ℝ)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
all_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
functionEquality, 
cumulativity, 
cut, 
lemma_by_obid, 
hypothesis, 
universeEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality
Latex:
Set(\mBbbR{})  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_18-AM-08_07_18
Last ObjectModification:
2015_12_28-AM-01_13_45
Theory : reals
Home
Index