Nuprl Lemma : rset-member_wf

[A:Set(ℝ)]. ∀[x:ℝ].  (x ∈ A ∈ ℙ)


Proof




Definitions occuring in Statement :  rset-member: x ∈ A rset: Set(ℝ) real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  rset-member: x ∈ A rset: Set(ℝ) uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  real_wf set_wf all_wf req_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut applyEquality setElimination thin rename hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isect_memberEquality isectElimination because_Cache instantiate functionEquality cumulativity universeEquality lambdaEquality

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[x:\mBbbR{}].    (x  \mmember{}  A  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_07_32
Last ObjectModification: 2015_12_28-AM-01_13_53

Theory : reals


Home Index