Nuprl Lemma : rset-member_wf
∀[A:Set(ℝ)]. ∀[x:ℝ].  (x ∈ A ∈ ℙ)
Proof
Definitions occuring in Statement : 
rset-member: x ∈ A
, 
rset: Set(ℝ)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
rset-member: x ∈ A
, 
rset: Set(ℝ)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
set_wf, 
all_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
lambdaEquality
Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[x:\mBbbR{}].    (x  \mmember{}  A  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_07_32
Last ObjectModification:
2015_12_28-AM-01_13_53
Theory : reals
Home
Index