Nuprl Lemma : least-upper-bound

[A:Set(ℝ)]
  ((∃x:ℝ(x ∈ A))
   bounded-above(A)
   (∃b:ℝsup(A) ⇐⇒ ∀x,y:ℝ.  ((x < y)  ((∃a:ℝ((a ∈ A) ∧ (x < a))) ∨ A ≤ y))))


Proof




Definitions occuring in Statement :  sup: sup(A) b bounded-above: bounded-above(A) upper-bound: A ≤ b rset-member: x ∈ A rset: Set(ℝ) rless: x < y real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: rev_implies:  Q or: P ∨ Q sup: sup(A) b uimplies: supposing a cand: c∧ B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top upper-bound: A ≤ b guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rset: Set(ℝ) subtype_rel: A ⊆B rset-member: x ∈ A strict-upper-bounds: strict-upper-bounds(A) strict-upper-bound: A < b rneq: x ≠ y less_than: a < b squash: T less_than': less_than'(a;b) true: True nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermSubtract: left "-" right rtermDivide: num "/" denom rtermConstant: "const" rtermVar: rtermVar(var) pi1: fst(t) rtermAdd: left "+" right pi2: snd(t) int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rgt: x > y closed-rset: closed-rset(A) upper-bounds: upper-bounds(A) member-closure: y ∈ closure(A) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rless_wf real_wf sup_wf rset-member_wf upper-bound_wf bounded-above_wf rset_wf rless-cases rsub_wf rless-implies-rless int-to-real_wf itermSubtract_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_const_lemma rless_transitivity2 rleq_weakening_rless le_witness_for_triv sup-iff-closure closures-meet strict-upper-bounds_wf bounded-above-strict subtype_rel_self rleq_wf rdiv_wf rless-int rleq-int-fractions2 decidable__lt full-omega-unsat intformnot_wf intformless_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than istype-false rless-int-fractions3 strict-upper-bound_wf rmul_wf radd_wf rmul_preserves_rless trivial-rsub-rless assert-rat-term-eq2 rtermSubtract_wf rtermVar_wf rtermAdd_wf rtermMultiply_wf rtermDivide_wf rtermConstant_wf req-implies-req req_wf rinv_wf2 itermMultiply_wf itermAdd_wf minus-one-mul-top subtype_base_sq int_subtype_base nequal_wf rless_functionality req_transitivity radd_functionality rmul-rinv3 int-rinv-cancel req_weakening real_term_value_mul_lemma real_term_value_add_lemma rleq_weakening_equal rleq_weakening rleq_functionality_wrt_implies rsub_functionality_wrt_rleq member-closure_wf upper-bounds-closed istype-nat converges-to_wf upper-bounds_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis inhabitedIsType sqequalRule productIsType functionIsType because_Cache unionIsType dependent_functionElimination independent_functionElimination unionElimination inlFormation_alt inrFormation_alt natural_numberEquality independent_isectElimination dependent_pairFormation_alt approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry functionIsTypeImplies rename setElimination applyEquality instantiate universeEquality closedConclusion imageMemberEquality baseClosed dependent_set_memberEquality_alt minusEquality cumulativity intEquality equalityIstype sqequalBase promote_hyp

Latex:
\mforall{}[A:Set(\mBbbR{})]
    ((\mexists{}x:\mBbbR{}.  (x  \mmember{}  A))
    {}\mRightarrow{}  bounded-above(A)
    {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  sup(A)  =  b  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  ((\mexists{}a:\mBbbR{}.  ((a  \mmember{}  A)  \mwedge{}  (x  <  a)))  \mvee{}  A  \mleq{}  y))))



Date html generated: 2019_10_29-AM-10_43_13
Last ObjectModification: 2019_04_19-PM-06_29_38

Theory : reals


Home Index