Nuprl Lemma : upper-bounds_wf

[A:Set(ℝ)]. (upper-bounds(A) ∈ Set(ℝ))


Proof




Definitions occuring in Statement :  upper-bounds: upper-bounds(A) rset: Set(ℝ) uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  upper-bounds: upper-bounds(A) rset: Set(ℝ) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] upper-bound: A ≤ b guard: {T} uimplies: supposing a
Lemmas referenced :  upper-bound_wf all_wf real_wf req_wf rleq_transitivity rleq_weakening rset-member_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setElimination thin rename dependent_set_memberEquality lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality functionEquality applyEquality because_Cache lambdaFormation dependent_functionElimination independent_functionElimination independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry instantiate cumulativity universeEquality

Latex:
\mforall{}[A:Set(\mBbbR{})].  (upper-bounds(A)  \mmember{}  Set(\mBbbR{}))



Date html generated: 2016_05_18-AM-08_11_25
Last ObjectModification: 2015_12_28-AM-01_17_00

Theory : reals


Home Index