Nuprl Lemma : req-implies-req

[a,b,c,d:ℝ].  (a b) supposing ((c d) and ((d c) (b a)))


Proof




Definitions occuring in Statement :  rsub: y req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q prop: rsub: y guard: {T}
Lemmas referenced :  radd-preserves-req rminus_wf radd-rminus-both req_witness req_wf rsub_wf real_wf radd_wf int-to-real_wf req_functionality req_weakening radd_comm req_inversion req_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality

Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    (a  =  b)  supposing  ((c  =  d)  and  ((d  -  c)  =  (b  -  a)))



Date html generated: 2017_10_03-AM-08_25_44
Last ObjectModification: 2017_04_04-PM-06_40_00

Theory : reals


Home Index