Nuprl Lemma : upper-bounds-closed

[A:Set(ℝ)]. closed-rset(upper-bounds(A))


Proof




Definitions occuring in Statement :  upper-bounds: upper-bounds(A) closed-rset: closed-rset(A) rset: Set(ℝ) uall: [x:A]. B[x]
Definitions unfolded in proof :  upper-bounds: upper-bounds(A) closed-rset: closed-rset(A) upper-bound: A ≤ b member-closure: y ∈ closure(A) rset-member: x ∈ A uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q rset: Set(ℝ) subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  subtype_rel_self istype-nat converges-to_wf rleq_wf real_wf le_witness_for_triv rset_wf constant-limit req_weakening rleq-limit
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType applyEquality setElimination rename hypothesisEquality hypothesis instantiate extract_by_obid isectElimination universeEquality inhabitedIsType productIsType functionIsType lambdaEquality_alt because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies independent_functionElimination

Latex:
\mforall{}[A:Set(\mBbbR{})].  closed-rset(upper-bounds(A))



Date html generated: 2019_10_29-AM-10_41_07
Last ObjectModification: 2019_04_19-PM-06_28_39

Theory : reals


Home Index