Nuprl Lemma : upper-bounds-closed
∀[A:Set(ℝ)]. closed-rset(upper-bounds(A))
Proof
Definitions occuring in Statement : 
upper-bounds: upper-bounds(A), 
closed-rset: closed-rset(A), 
rset: Set(ℝ), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
upper-bounds: upper-bounds(A), 
closed-rset: closed-rset(A), 
upper-bound: A ≤ b, 
member-closure: y ∈ closure(A), 
rset-member: x ∈ A, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
rset: Set(ℝ), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}
Lemmas referenced : 
subtype_rel_self, 
istype-nat, 
converges-to_wf, 
rleq_wf, 
real_wf, 
le_witness_for_triv, 
rset_wf, 
constant-limit, 
req_weakening, 
rleq-limit
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
inhabitedIsType, 
productIsType, 
functionIsType, 
lambdaEquality_alt, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
independent_functionElimination
Latex:
\mforall{}[A:Set(\mBbbR{})].  closed-rset(upper-bounds(A))
Date html generated:
2019_10_29-AM-10_41_07
Last ObjectModification:
2019_04_19-PM-06_28_39
Theory : reals
Home
Index