Nuprl Lemma : bounded-above-strict
∀[A:Set(ℝ)]. (bounded-above(A) 
⇒ (∃b:ℝ. A < b))
Proof
Definitions occuring in Statement : 
bounded-above: bounded-above(A)
, 
strict-upper-bound: A < b
, 
rset: Set(ℝ)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
bounded-above: bounded-above(A)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
rneq: x ≠ y
, 
guard: {T}
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
upper-bound: A ≤ b
, 
strict-upper-bound: A < b
Lemmas referenced : 
real_wf, 
upper-bound_wf, 
rset_wf, 
rless-int-fractions2, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
radd-preserves-rless, 
int-to-real_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
rmul_wf, 
rinv_wf2, 
itermMultiply_wf, 
strict-upper-bound_wf, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rinv-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
rset-member_wf, 
rless_transitivity2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
inrFormation_alt, 
because_Cache, 
int_eqEquality, 
inhabitedIsType
Latex:
\mforall{}[A:Set(\mBbbR{})].  (bounded-above(A)  {}\mRightarrow{}  (\mexists{}b:\mBbbR{}.  A  <  b))
Date html generated:
2019_10_29-AM-10_39_26
Last ObjectModification:
2019_04_19-PM-06_26_35
Theory : reals
Home
Index