Nuprl Lemma : member-closure_wf
∀[A:ℝ ⟶ ℙ]. ∀[y:ℝ].  (y ∈ closure(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
member-closure: y ∈ closure(A)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member-closure: y ∈ closure(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
nat_wf, 
real_wf, 
and_wf, 
converges-to_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[y:\mBbbR{}].    (y  \mmember{}  closure(A)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_10_54
Last ObjectModification:
2015_12_28-AM-01_16_26
Theory : reals
Home
Index