Nuprl Lemma : member-closure_wf

[A:ℝ ⟶ ℙ]. ∀[y:ℝ].  (y ∈ closure(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  member-closure: y ∈ closure(A) real: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  member-closure: y ∈ closure(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  exists_wf nat_wf real_wf and_wf converges-to_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis lambdaEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[A:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[y:\mBbbR{}].    (y  \mmember{}  closure(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_10_54
Last ObjectModification: 2015_12_28-AM-01_16_26

Theory : reals


Home Index