Nuprl Lemma : rmaximum-select

n,m:ℤ.  ∀x:{n..m 1-} ⟶ ℝ. ∀e:ℝ.  ((r0 < e)  (∃i:{n..m 1-}. ((rmaximum(n;m;i.x[i]) e) < x[i]))) supposing n ≤ m


Proof




Definitions occuring in Statement :  rmaximum: rmaximum(n;m;k.x[k]) rless: x < y rsub: y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  cand: c∧ B rge: x ≥ y req_int_terms: t1 ≡ t2 true: True less_than': less_than'(a;b) subtract: m rev_implies:  Q iff: ⇐⇒ Q bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 uiff: uiff(P;Q) so_apply: x[s] nat_plus: + squash: T sq_stable: SqStable(P) real: subtype_rel: A ⊆B lelt: i ≤ j < k sq_exists: x:A [B[x]] rless: x < y int_seg: {i..j-} so_lambda: λ2x.t[x] sq_type: SQType(T) ge: i ≥  guard: {T} top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) nat: rmaximum: rmaximum(n;m;k.x[k]) prop: uall: [x:A]. B[x] false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  req_weakening trivial-rless-radd rmax_strict_lb rleq_weakening_rless rleq_weakening_equal rless_functionality_wrt_implies real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 radd-zero radd_comm radd_wf rless_functionality radd-preserves-rless le_weakening2 subtract-add-cancel rless-cases subtype_rel_self le-add-cancel add-commutes add-zero zero-add zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 false_wf le_reflexive int_seg_subtype subtype_rel_function assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_int_wf assert_of_lt_int eqtt_to_assert assert_wf equal-wf-base uiff_transitivity bool_wf lt_int_wf primrec-unroll trivial-rsub-rless equal_wf primrec-wf2 less_than_wf set_wf rmax_wf lelt_wf decidable__lt int_formula_prop_less_lemma intformless_wf nat_plus_properties sq_stable__less_than int_seg_properties primrec_wf rsub_wf exists_wf int-to-real_wf rless_wf real_wf int_seg_wf all_wf primrec0_lemma int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int nat_properties int_subtype_base subtype_base_sq nat_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf decidable__le le_wf less_than'_wf
Rules used in proof :  multiplyEquality minusEquality closedConclusion baseApply equalityElimination functionExtensionality imageElimination baseClosed imageMemberEquality applyEquality addEquality functionEquality setElimination applyLambdaEquality equalitySymmetry equalityTransitivity cumulativity instantiate independent_pairFormation voidEquality isect_memberEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality because_Cache dependent_set_memberEquality intEquality rename axiomEquality hypothesis isectElimination extract_by_obid voidElimination hypothesisEquality dependent_functionElimination lambdaEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n,m:\mBbbZ{}.
    \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}e:\mBbbR{}.    ((r0  <  e)  {}\mRightarrow{}  (\mexists{}i:\{n..m  +  1\msupminus{}\}.  ((rmaximum(n;m;i.x[i])  -  e)  <  x[i]))) 
    supposing  n  \mleq{}  m



Date html generated: 2018_05_22-PM-01_57_29
Last ObjectModification: 2018_05_21-AM-00_16_42

Theory : reals


Home Index