Nuprl Lemma : sq_stable__icompact
∀I:Interval. SqStable(icompact(I))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
interval: Interval
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
icompact: icompact(I)
, 
i-finite: i-finite(I)
, 
i-closed: i-closed(I)
, 
i-nonvoid: i-nonvoid(I)
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
assert: ↑b
, 
bor: p ∨bq
, 
bfalse: ff
, 
i-member: r ∈ I
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
false: False
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
rleq_transitivity, 
sq_stable__rleq, 
interval_wf, 
rleq_weakening_equal, 
false_wf, 
rless_wf, 
true_wf, 
rleq_wf, 
real_wf, 
exists_wf, 
and_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
cut, 
independent_pairFormation, 
hypothesis, 
natural_numberEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
imageElimination, 
voidElimination, 
dependent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}I:Interval.  SqStable(icompact(I))
Date html generated:
2016_05_18-AM-08_48_13
Last ObjectModification:
2016_01_17-AM-02_26_16
Theory : reals
Home
Index