Step
*
of Lemma
Kummer-criterion
∀a,x:ℕ ⟶ ℝ.
((lim n→∞.a[n] * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < a[n]) ∧ (c ≤ ((a[n] * x[n]/x[n + 1]) - a[n + 1]))))))
⇒ Σn.x[n]↓)
∧ ((∃N:ℕ
((∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((a[n] * x[n]/x[n + 1]) - a[n + 1]) ≤ r0))
∧ Σn.(r1/a[N + n])↑))
⇒ Σn.x[n]↑))
BY
{ (Auto THEN Try ((OrRight THEN Auto)) THEN ExRepD) }
1
1. a : ℕ ⟶ ℝ
2. x : ℕ ⟶ ℝ
3. lim n→∞.a[n] * x[n] = r0
4. c : {c:ℝ| r0 < c}
5. N : ℕ
6. ∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n]))
7. ∀n:{N...}. ((r0 < a[n]) ∧ (c ≤ ((a[n] * x[n]/x[n + 1]) - a[n + 1])))
⊢ Σn.x[n]↓
2
1. a : ℕ ⟶ ℝ
2. x : ℕ ⟶ ℝ
3. lim n→∞.a[n] * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < a[n]) ∧ (c ≤ ((a[n] * x[n]/x[n + 1]) - a[n + 1]))))))
⇒ Σn.x[n]↓
4. N : ℕ
5. ∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n]))
6. ∀n:{N...}. (((a[n] * x[n]/x[n + 1]) - a[n + 1]) ≤ r0)
7. Σn.(r1/a[N + n])↑
⊢ Σn.x[n]↑
Latex:
Latex:
\mforall{}a,x:\mBbbN{} {}\mrightarrow{} \mBbbR{}.
((lim n\mrightarrow{}\minfty{}.a[n] * x[n] = r0
{}\mRightarrow{} (\mexists{}c:\{c:\mBbbR{}| r0 < c\}
\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < a[n]) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. ((r0 < a[n]) \mwedge{} (c \mleq{} ((a[n] * x[n]/x[n + 1]) - a[n + 1]))))))
{}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{})
\mwedge{} ((\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < a[n]) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. (((a[n] * x[n]/x[n + 1]) - a[n + 1]) \mleq{} r0))
\mwedge{} \mSigma{}n.(r1/a[N + n])\muparrow{}))
{}\mRightarrow{} \mSigma{}n.x[n]\muparrow{}))
By
Latex:
(Auto THEN Try ((OrRight THEN Auto)) THEN ExRepD)
Home
Index