Nuprl Lemma : Kummer-criterion

a,x:ℕ ⟶ ℝ.
  ((lim n→∞.a[n] x[n] r0
   (∃c:{c:ℝr0 < c} 
       ∃N:ℕ
        ((∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n])))
        ∧ (∀n:{N...}. ((r0 < a[n]) ∧ (c ≤ ((a[n] x[n]/x[n 1]) a[n 1]))))))
   Σn.x[n]↓)
  ∧ ((∃N:ℕ
       ((∀n:{N...}. ((r0 < a[n]) ∧ (r0 < x[n])))
       ∧ (∀n:{N...}. (((a[n] x[n]/x[n 1]) a[n 1]) ≤ r0))
       ∧ Σn.(r1/a[N n])↑))
     Σn.x[n]↑))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y rmul: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: nat: so_apply: x[s] int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top rless: x < y sq_exists: x:A [B[x]] nat_plus: + rneq: x ≠ y guard: {T} so_lambda: λ2x.t[x] series-converges: Σn.x[n]↓ series-sum: Σn.x[n] a converges: x[n]↓ as n→∞ subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q cauchy: cauchy(n.x[n]) sq_stable: SqStable(P) squash: T rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 converges-to: lim n→∞.x[n] y rleq: x ≤ y rnonneg: rnonneg(x) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y subtract: m true: True int_seg: {i..j-} lelt: i ≤ j < k pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] sq_type: SQType(T) real:
Lemmas referenced :  real_wf rless_wf int-to-real_wf istype-nat istype-int_upper int_upper_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_plus_properties rleq_wf rsub_wf rdiv_wf itermAdd_wf int_term_value_add_lemma converges-to_wf rmul_wf series-diverges_wf converges-iff-cauchy-ext rsum_wf int_seg_subtype_nat istype-false int_seg_wf nat_plus_wf small-reciprocal-real rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rmul_preserves_rless itermSubtract_wf itermMultiply_wf rinv_wf2 sq_stable__rless rless_functionality req_transitivity rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma int_term_value_mul_lemma istype-less_than sq_stable__all nat_wf le_wf rabs_wf sq_stable__rleq le_witness_for_triv imax_wf sq_stable__less_than intformeq_wf int_formula_prop_eq_lemma imax_ub rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening radd_wf r-triangle-inequality2 rless_functionality_wrt_implies rleq_functionality rabs-difference-symmetry req_weakening radd_functionality_wrt_rleq radd-rdiv rdiv_functionality radd-int req-int-fractions decidable__equal_int rless_transitivity2 not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel rabs_functionality rsum-difference rsum_functionality_wrt_rleq subtype_rel_function subtype_rel_self subtract_wf int_seg_properties int_term_value_subtract_lemma subtract-add-cancel rmul_preserves_rleq rmul_preserves_rleq2 rleq_weakening_rless rminus_wf itermMinus_wf radd_functionality rmul_functionality rmul-rinv real_term_value_add_lemma real_term_value_minus_lemma squash_wf true_wf iff_weakening_equal rsum_nonneg rabs-of-nonneg rleq_transitivity rsum_linearity2 upper_subtype_nat le_transitivity add-subtract-cancel rsum-telescopes2 rabs-bounds rinv-mul-as-rdiv rsum-zero-req rleq-int-fractions2 radd-preserves-rleq ge_wf subtract-1-ge-0 subtype_base_sq int_subtype_base trivial-int-eq1 comparison-test-for-divergence series-diverges-rmul rmul-is-positive rmul-nonneg-case1 series-diverges-tail
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule productIsType setIsType universeIsType introduction extract_by_obid hypothesis isectElimination natural_numberEquality hypothesisEquality functionIsType setElimination rename applyEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation because_Cache addEquality inrFormation_alt closedConclusion inhabitedIsType imageMemberEquality baseClosed imageElimination multiplyEquality functionEquality equalityTransitivity equalitySymmetry functionIsTypeImplies dependent_set_memberFormation_alt applyLambdaEquality equalityIstype inlFormation_alt minusEquality promote_hyp instantiate universeEquality intWeakElimination cumulativity intEquality

Latex:
\mforall{}a,x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((lim  n\mrightarrow{}\minfty{}.a[n]  *  x[n]  =  r0
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  r0  <  c\} 
              \mexists{}N:\mBbbN{}
                ((\mforall{}n:\{N...\}.  ((r0  <  a[n])  \mwedge{}  (r0  <  x[n])))
                \mwedge{}  (\mforall{}n:\{N...\}.  ((r0  <  a[n])  \mwedge{}  (c  \mleq{}  ((a[n]  *  x[n]/x[n  +  1])  -  a[n  +  1]))))))
    {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})
    \mwedge{}  ((\mexists{}N:\mBbbN{}
              ((\mforall{}n:\{N...\}.  ((r0  <  a[n])  \mwedge{}  (r0  <  x[n])))
              \mwedge{}  (\mforall{}n:\{N...\}.  (((a[n]  *  x[n]/x[n  +  1])  -  a[n  +  1])  \mleq{}  r0))
              \mwedge{}  \mSigma{}n.(r1/a[N  +  n])\muparrow{}))
        {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{}))



Date html generated: 2019_10_29-AM-10_27_35
Last ObjectModification: 2018_12_13-PM-02_06_23

Theory : reals


Home Index