Nuprl Lemma : converges-iff-cauchy-ext

x:ℕ ⟶ ℝ(x[n]↓ as n→∞ ⇐⇒ cauchy(n.x[n]))


Proof




Definitions occuring in Statement :  cauchy: cauchy(n.x[n]) converges: x[n]↓ as n→∞ real: nat: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] accelerate: accelerate(k;f) converges-iff-cauchy
Lemmas referenced :  converges-iff-cauchy
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry callbyvalueReduce sqleReflexivity

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mLeftarrow{}{}\mRightarrow{}  cauchy(n.x[n]))



Date html generated: 2019_10_29-AM-10_10_10
Last ObjectModification: 2019_04_01-PM-10_59_39

Theory : reals


Home Index