Nuprl Lemma : converges-iff-cauchy

x:ℕ ⟶ ℝ(x[n]↓ as n→∞ ⇐⇒ cauchy(n.x[n]))


Proof




Definitions occuring in Statement :  cauchy: cauchy(n.x[n]) converges: x[n]↓ as n→∞ real: nat: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y sq_stable: SqStable(P) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat: sq_exists: x:A [B[x]] true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + cauchy: cauchy(n.x[n]) converges-to: lim n→∞.x[n] y exists: x:A. B[x] converges: x[n]↓ as n→∞ uiff: uiff(P;Q) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 subtype_rel: A ⊆B rdiv: (x/y) real: rational-approx: (x within 1/n) nequal: a ≠ b ∈  int_nzero: -o sq_type: SQType(T) reg-seq-add: reg-seq-add(x;y) rabs: |x| rminus: -(x) rleq2: rleq2(x;y) rmax: rmax(x;y) int_upper: {i...} reg-seq-mul: reg-seq-mul(x;y) int-to-real: r(n) regular-int-seq: k-regular-seq(f) subtract: m absval: |i|

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  \mLeftarrow{}{}\mRightarrow{}  cauchy(n.x[n]))



Date html generated: 2020_05_20-AM-11_08_47
Last ObjectModification: 2019_12_28-PM-11_47_44

Theory : reals


Home Index