Nuprl Lemma : series-diverges_wf
∀[x:ℕ ⟶ ℝ]. (Σn.x[n]↑ ∈ ℙ)
Proof
Definitions occuring in Statement :
series-diverges: Σn.x[n]↑
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
series-diverges: Σn.x[n]↑
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
diverges_wf,
rsum_wf,
int_seg_subtype_nat,
false_wf,
int_seg_wf,
nat_wf,
real_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
applyEquality,
addEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality
Latex:
\mforall{}[x:\mBbbN{} {}\mrightarrow{} \mBbbR{}]. (\mSigma{}n.x[n]\muparrow{} \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-08_00_35
Last ObjectModification:
2015_12_28-AM-01_10_15
Theory : reals
Home
Index