Nuprl Lemma : diverges_wf
∀[x:ℕ ⟶ ℝ]. (n.x[n]↑ ∈ ℙ)
Proof
Definitions occuring in Statement : 
diverges: n.x[n]↑, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
diverges: n.x[n]↑, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
nat: ℕ, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
exists_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
nat_wf, 
le_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (n.x[n]\muparrow{}  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-07_36_12
Last ObjectModification:
2015_12_28-AM-00_57_04
Theory : reals
Home
Index