Nuprl Lemma : rsum-zero-req

[n,m:ℤ]. ∀[f:{n..m 1-} ⟶ ℝ].  Σ{f[k] n≤k≤m} r0 supposing ∀k:{n..m 1-}. (f[k] r0)


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: pointwise-req: x[k] y[k] for k ∈ [n,m] all: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  rsum-zero req_witness rsum_wf int_seg_wf int-to-real_wf all_wf req_wf real_wf rsum_functionality le_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf req_transitivity
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality addEquality natural_numberEquality independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality intEquality independent_isectElimination lambdaFormation dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    \mSigma{}\{f[k]  |  n\mleq{}k\mleq{}m\}  =  r0  supposing  \mforall{}k:\{n..m  +  1\msupminus{}\}.  (f[k]  =  r0)



Date html generated: 2016_10_26-AM-09_16_54
Last ObjectModification: 2016_10_10-PM-01_24_23

Theory : reals


Home Index