Nuprl Lemma : rsum_functionality
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℝ].  Σ{x[k] | n≤k≤m} = Σ{y[k] | n≤k≤m} supposing x[k] = y[k] for k ∈ [n,m]
Proof
Definitions occuring in Statement : 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rsum: Σ{x[k] | n≤k≤m}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
cand: A c∧ B
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
less_than: a < b
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
Lemmas referenced : 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
intformless_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
subtract_wf, 
int_seg_properties, 
select-from-upto, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
not_wf, 
bnot_wf, 
assert_wf, 
lt_int_wf, 
select-map, 
lelt_wf, 
top_wf, 
subtype_rel_list, 
length-from-upto, 
length-map, 
length_wf, 
nat_wf, 
length_wf_nat, 
map-length, 
radd-list_functionality, 
valueall-type-real-list, 
evalall-reduce, 
from-upto_wf, 
less_than_wf, 
le_wf, 
and_wf, 
map_wf, 
real-valueall-type, 
list-valueall-type, 
list_wf, 
valueall-type-has-valueall, 
int-value-type, 
value-type-has-value, 
real_wf, 
pointwise-req_wf, 
int_seg_wf, 
rsum_wf, 
req_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
independent_isectElimination, 
setEquality, 
callbyvalueReduce, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
productElimination, 
productEquality, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
impliesFunctionality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}  =  \mSigma{}\{y[k]  |  n\mleq{}k\mleq{}m\}  supposing  x[k]  =  y[k]  for  k  \mmember{}  [n,m]
Date html generated:
2016_05_18-AM-07_44_49
Last ObjectModification:
2016_01_17-AM-02_07_11
Theory : reals
Home
Index