Nuprl Lemma : radd-list_functionality
∀[L1,L2:ℝ List].  radd-list(L1) = radd-list(L2) supposing (||L1|| = ||L2|| ∈ ℤ) ∧ (∀i:ℕ||L1||. (L1[i] = L2[i]))
Proof
Definitions occuring in Statement : 
req: x = y, 
radd-list: radd-list(L), 
real: ℝ, 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtract: n - m, 
cons: [a / b], 
less_than: a < b, 
less_than': less_than'(a;b), 
le: A ≤ B, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
select: L[n], 
nil: [], 
list_ind: list_ind, 
map: map(f;as), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
true: True, 
real: ℝ, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
nat_plus: ℕ+, 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
prop: ℙ, 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
radd-list: radd-list(L), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add-subtract-cancel, 
select-cons-tl, 
real-regular, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
add-member-int_seg2, 
decidable__equal_int, 
lelt_wf, 
nat_plus_properties, 
add_nat_plus, 
bdd-diff-add, 
bdd-diff_weakening, 
equal-wf-T-base, 
false_wf, 
add-is-int-iff, 
cons_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
l_sum_cons_lemma, 
map_cons_lemma, 
length_of_cons_lemma, 
equal-wf-base, 
l_sum_nil_lemma, 
map_nil_lemma, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
nil_wf, 
equal-wf-base-T, 
map_wf, 
l_sum_wf, 
list_induction, 
decidable__le, 
int_seg_properties, 
select_wf, 
req_wf, 
int_seg_wf, 
all_wf, 
list-subtype-bag, 
radd-list_wf-bag, 
req_witness, 
iff_weakening_equal, 
subtype_rel_self, 
subtype_rel_list, 
reg-seq-list-add-as-l_sum, 
true_wf, 
squash_wf, 
bdd-diff_wf, 
accelerate-bdd-diff, 
regular-int-seq_wf, 
nat_plus_wf, 
bdd-diff_functionality, 
reg-seq-list-add_wf, 
less_than_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
intformle_wf, 
intformless_wf, 
decidable__lt, 
accelerate_wf, 
req-iff-bdd-diff, 
int-to-real_wf, 
req_weakening, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
non_neg_length, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
length_wf, 
eq_int_wf, 
length_wf_nat, 
int-value-type, 
le_wf, 
set-value-type, 
nat_wf, 
value-type-has-value, 
valueall-type-real-list, 
evalall-reduce, 
real-valueall-type, 
list-valueall-type, 
real_wf, 
list_wf, 
valueall-type-has-valueall
Rules used in proof : 
functionExtensionality, 
hyp_replacement, 
applyLambdaEquality, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
addEquality, 
productEquality, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
functionEquality, 
setEquality, 
rename, 
setElimination, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
approximateComputation, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
natural_numberEquality, 
lambdaEquality, 
intEquality, 
because_Cache, 
callbyvalueReduce, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
isectElimination, 
extract_by_obid, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[L1,L2:\mBbbR{}  List].
    radd-list(L1)  =  radd-list(L2)  supposing  (||L1||  =  ||L2||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  (L1[i]  =  L2[i]))
Date html generated:
2018_05_22-PM-01_20_45
Last ObjectModification:
2018_05_21-AM-00_04_41
Theory : reals
Home
Index