Nuprl Lemma : real-regular

[x:ℝ]. ∀[k:ℕ+].  k-regular-seq(x)


Proof




Definitions occuring in Statement :  real: regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + real: uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: regular-int-seq: k-regular-seq(f) le: A ≤ B subtype_rel: A ⊆B nat: less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_stable: SqStable(P)
Lemmas referenced :  regular-int-seq-weakening nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf less_than'_wf absval_wf subtract_wf nat_wf nat_plus_wf real_wf sq_stable__regular-int-seq less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation productElimination independent_pairEquality because_Cache multiplyEquality addEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    k-regular-seq(x)



Date html generated: 2017_10_02-PM-07_13_11
Last ObjectModification: 2017_07_05-PM-03_42_23

Theory : reals


Home Index