Nuprl Lemma : sq_stable__regular-int-seq
∀[k:ℕ+]. ∀[f:ℕ+ ⟶ ℤ].  SqStable(k-regular-seq(f))
Proof
Definitions occuring in Statement : 
regular-int-seq: k-regular-seq(f)
, 
nat_plus: ℕ+
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
regular-int-seq: k-regular-seq(f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
sq_stable__all, 
nat_plus_wf, 
all_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
sq_stable__le, 
less_than'_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
addEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    SqStable(k-regular-seq(f))
Date html generated:
2016_05_18-AM-06_46_15
Last ObjectModification:
2015_12_28-AM-00_24_54
Theory : reals
Home
Index