Nuprl Lemma : sq_stable__regular-int-seq

[k:ℕ+]. ∀[f:ℕ+ ⟶ ℤ].  SqStable(k-regular-seq(f))


Proof




Definitions occuring in Statement :  regular-int-seq: k-regular-seq(f) nat_plus: + sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  regular-int-seq: k-regular-seq(f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B nat: so_apply: x[s] implies:  Q all: x:A. B[x] sq_stable: SqStable(P) le: A ≤ B and: P ∧ Q not: ¬A false: False prop:
Lemmas referenced :  sq_stable__all nat_plus_wf all_wf le_wf absval_wf subtract_wf nat_wf sq_stable__le less_than'_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality multiplyEquality setElimination rename hypothesisEquality applyEquality natural_numberEquality addEquality independent_functionElimination lambdaFormation because_Cache dependent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality voidElimination

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    SqStable(k-regular-seq(f))



Date html generated: 2016_05_18-AM-06_46_15
Last ObjectModification: 2015_12_28-AM-00_24_54

Theory : reals


Home Index