Step
*
of Lemma
radd-list_functionality
∀[L1,L2:ℝ List]. radd-list(L1) = radd-list(L2) supposing (||L1|| = ||L2|| ∈ ℤ) ∧ (∀i:ℕ||L1||. (L1[i] = L2[i]))
BY
{ (Auto
THEN RepUR ``radd-list`` 0
THEN (CallByValueReduceOnTypes [⌜ℝ List⌝] 0⋅ THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit
THEN ((BLemma `req-iff-bdd-diff`⋅ THENM RWO "accelerate-bdd-diff" 0) THENA Auto)
THEN ((RWO "reg-seq-list-add-as-l_sum" 0 THENA Auto) THEN Thin (-4))⋅) }
1
1. L1 : ℝ List
2. L2 : ℝ List
3. ||L1|| = ||L2|| ∈ ℤ
4. ∀i:ℕ||L1||. (L1[i] = L2[i])
⊢ bdd-diff(λn.l_sum(map(λx.(x n);L1));λn.l_sum(map(λx.(x n);L2)))
Latex:
Latex:
\mforall{}[L1,L2:\mBbbR{} List].
radd-list(L1) = radd-list(L2) supposing (||L1|| = ||L2||) \mwedge{} (\mforall{}i:\mBbbN{}||L1||. (L1[i] = L2[i]))
By
Latex:
(Auto
THEN RepUR ``radd-list`` 0
THEN (CallByValueReduceOnTypes [\mkleeneopen{}\mBbbR{} List\mkleeneclose{}] 0\mcdot{} THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN AutoSplit
THEN ((BLemma `req-iff-bdd-diff`\mcdot{} THENM RWO "accelerate-bdd-diff" 0) THENA Auto)
THEN ((RWO "reg-seq-list-add-as-l\_sum" 0 THENA Auto) THEN Thin (-4))\mcdot{})
Home
Index