Step
*
of Lemma
rsum_functionality
∀[n,m:ℤ]. ∀[x,y:{n..m + 1-} ⟶ ℝ]. Σ{x[k] | n≤k≤m} = Σ{y[k] | n≤k≤m} supposing x[k] = y[k] for k ∈ [n,m]
BY
{ (Auto
THEN Unfold `rsum` 0
THEN RepeatFor 3 ((CallByValueReduce 0 THENA Auto))
THEN BLemma `radd-list_functionality`
THEN Auto) }
1
1. n : ℤ
2. m : ℤ
3. x : {n..m + 1-} ⟶ ℝ
4. y : {n..m + 1-} ⟶ ℝ
5. x[k] = y[k] for k ∈ [n,m]
6. ||map(λk.x[k];[n, m + 1))|| = ||map(λk.y[k];[n, m + 1))|| ∈ ℤ
7. i : ℕ||map(λk.x[k];[n, m + 1))||@i
⊢ map(λk.x[k];[n, m + 1))[i] = map(λk.y[k];[n, m + 1))[i]
Latex:
Latex:
\mforall{}[n,m:\mBbbZ{}]. \mforall{}[x,y:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}].
\mSigma{}\{x[k] | n\mleq{}k\mleq{}m\} = \mSigma{}\{y[k] | n\mleq{}k\mleq{}m\} supposing x[k] = y[k] for k \mmember{} [n,m]
By
Latex:
(Auto
THEN Unfold `rsum` 0
THEN RepeatFor 3 ((CallByValueReduce 0 THENA Auto))
THEN BLemma `radd-list\_functionality`
THEN Auto)
Home
Index