Nuprl Lemma : Raabe-lemma

y:ℕ ⟶ ℝ. ∀c:ℝ.
  ((r0 < c)
   (∀N:ℕ+((∀n:{N...}. (r0 < y[n]))  (∀n:{N...}. (c ≤ (r(n) ((y[n]/y[n 1]) r1))))  lim n→∞.y[n] r0)))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y rmul: b int-to-real: r(n) real: int_upper: {i...} nat_plus: + nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y uall: [x:A]. B[x] member: t ∈ T nat_plus: + so_apply: x[s] nat: int_upper: {i...} rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: rneq: x ≠ y guard: {T} le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y top: Top ge: i ≥  squash: T sq_stable: SqStable(P) real: subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) subtract: m so_lambda: λ2x.t[x] rdiv: (x/y) req_int_terms: t1 ≡ t2 lelt: i ≤ j < k rev_implies:  Q iff: ⇐⇒ Q int_seg: {i..j-} sq_type: SQType(T) less_than': less_than'(a;b) cand: c∧ B pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] true: True rge: x ≥ y less_than: a < b rgt: x > y

Latex:
\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}c:\mBbbR{}.
    ((r0  <  c)
    {}\mRightarrow{}  (\mforall{}N:\mBbbN{}\msupplus{}
                ((\mforall{}n:\{N...\}.  (r0  <  y[n]))
                {}\mRightarrow{}  (\mforall{}n:\{N...\}.  (c  \mleq{}  (r(n)  *  ((y[n]/y[n  +  1])  -  r1))))
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  r0)))



Date html generated: 2020_05_20-AM-11_23_02
Last ObjectModification: 2020_01_06-PM-00_48_54

Theory : reals


Home Index