Step
*
1
1
1
of Lemma
Raabe-test
.....assertion.....
1. x : ℕ ⟶ ℝ
2. lim n→∞.r(n) * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < r(n)) ∧ (c ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
⇒ Σn.x[n]↓
3. (∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) ≤ r0))
∧ Σn.(r1/r(N + n))↑))
⇒ Σn.x[n]↑
4. L : ℝ
5. ∀n:ℕ. (r0 < x[n])
6. lim n→∞.r(n) * ((x[n]/x[n + 1]) - r1) = L
7. r1 < L
8. k : ℕ+
9. (r1/r(k)) < (L - r1)
10. r0 < (L - r1 - (r1/r(k)))
⊢ lim n→∞.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = L - r1
BY
{ Assert ⌜lim n→∞.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = r1 * (L - r1)⌝⋅ }
1
.....assertion.....
1. x : ℕ ⟶ ℝ
2. lim n→∞.r(n) * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < r(n)) ∧ (c ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
⇒ Σn.x[n]↓
3. (∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) ≤ r0))
∧ Σn.(r1/r(N + n))↑))
⇒ Σn.x[n]↑
4. L : ℝ
5. ∀n:ℕ. (r0 < x[n])
6. lim n→∞.r(n) * ((x[n]/x[n + 1]) - r1) = L
7. r1 < L
8. k : ℕ+
9. (r1/r(k)) < (L - r1)
10. r0 < (L - r1 - (r1/r(k)))
⊢ lim n→∞.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = r1 * (L - r1)
2
1. x : ℕ ⟶ ℝ
2. lim n→∞.r(n) * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < r(n)) ∧ (c ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
⇒ Σn.x[n]↓
3. (∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) ≤ r0))
∧ Σn.(r1/r(N + n))↑))
⇒ Σn.x[n]↑
4. L : ℝ
5. ∀n:ℕ. (r0 < x[n])
6. lim n→∞.r(n) * ((x[n]/x[n + 1]) - r1) = L
7. r1 < L
8. k : ℕ+
9. (r1/r(k)) < (L - r1)
10. r0 < (L - r1 - (r1/r(k)))
11. lim n→∞.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = r1 * (L - r1)
⊢ lim n→∞.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = L - r1
Latex:
Latex:
.....assertion.....
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. lim n\mrightarrow{}\minfty{}.r(n) * x[n] = r0
{}\mRightarrow{} (\mexists{}c:\{c:\mBbbR{}| r0 < c\}
\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (c \mleq{} ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
{}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{}
3. (\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) \mleq{} r0))
\mwedge{} \mSigma{}n.(r1/r(N + n))\muparrow{}))
{}\mRightarrow{} \mSigma{}n.x[n]\muparrow{}
4. L : \mBbbR{}
5. \mforall{}n:\mBbbN{}. (r0 < x[n])
6. lim n\mrightarrow{}\minfty{}.r(n) * ((x[n]/x[n + 1]) - r1) = L
7. r1 < L
8. k : \mBbbN{}\msupplus{}
9. (r1/r(k)) < (L - r1)
10. r0 < (L - r1 - (r1/r(k)))
\mvdash{} lim n\mrightarrow{}\minfty{}.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = L - r1
By
Latex:
Assert \mkleeneopen{}lim n\mrightarrow{}\minfty{}.(r(n)/r(n + 1)) * ((r(n) * ((x[n]/x[n + 1]) - r1)) - r1) = r1 * (L - r1)\mkleeneclose{}\mcdot{}
Home
Index