Nuprl Lemma : Raabe-test

x:ℕ ⟶ ℝ. ∀L:ℝ.
  ((∀n:ℕ(r0 < x[n]))
   lim n→∞.r(n) ((x[n]/x[n 1]) r1) L
   (((r1 < L)  Σn.x[n]↓) ∧ ((L < r1)  Σn.x[n]↑)))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y rdiv: (x/y) rless: x < y rsub: y rmul: b int-to-real: r(n) real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] nat: so_apply: x[s] and: P ∧ Q implies:  Q cand: c∧ B uimplies: supposing a prop: exists: x:A. B[x] nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top ge: i ≥  uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 itermSubtract: left (-) right int_term_ind: int_term_ind real_term_value: real_term_value(f;t) itermConstant: "const" rev_uimplies: rev_uimplies(P;Q) true: True rsub: y squash: T subtype_rel: A ⊆B real: sq_stable: SqStable(P) rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermVar: rtermVar(var) pi1: fst(t) pi2: snd(t) rdiv: (x/y) converges-to: lim n→∞.x[n] y le: A ≤ B subtract: m less_than': less_than'(a;b) rleq: x ≤ y rnonneg: rnonneg(x) int_upper: {i...} rge: x ≥ y
Lemmas referenced :  Kummer-criterion int-to-real_wf istype-nat small-reciprocal-real rless-implies-rless rsub_wf rless_wf rdiv_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf converges-to_wf rmul_wf nat_properties decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma istype-le real_wf itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rmul-limit rsub-limit nat_wf satisfiable-full-omega-tt constant-limit req_weakening rinv-converges-to-0 real_term_polynomial converges-to_functionality rmul_preserves_req req_wf radd_wf rminus_wf req-int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma uiff_transitivity req_functionality rmul-rdiv-cancel2 req_transitivity rmul-distrib radd_functionality rmul_over_rminus rmul-one-both rminus_functionality uiff_transitivity3 squash_wf true_wf rminus-int radd-int sq_stable__less_than rmul-identity1 rmul-is-positive rmul-rsub-distrib rsub_functionality rmul_functionality rmul-assoc rmul_comm req_inversion assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf radd-preserves-req rinv_wf2 itermMinus_wf itermMultiply_wf rminus-rdiv rmul-int-rdiv real_term_value_add_lemma real_term_value_minus_lemma real_term_value_mul_lemma rmul-int rmul-rinv Raabe-lemma istype-false not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel istype-less_than istype-int_upper le_witness_for_triv upper_subtype_nat not-le-2 sq_stable__le add-swap int_upper_properties rleq_wf rabs-difference-bound-rleq rabs_wf sq_stable__rleq rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening radd-preserves-rleq rleq_functionality rinv-as-rdiv rinv-mul-as-rdiv series-diverges_wf rneq-int radd-preserves-rless rless_functionality rleq_weakening_rless series-diverges-tail-iff harmonic-series-diverges series-diverges_functionality req-int-fractions int_term_value_mul_lemma set_subtype_base le_wf int_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin sqequalRule lambdaEquality_alt isectElimination setElimination rename hypothesisEquality hypothesis lambdaFormation_alt productElimination independent_functionElimination natural_numberEquality independent_isectElimination dependent_set_memberEquality_alt because_Cache universeIsType inhabitedIsType closedConclusion inrFormation_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype equalityTransitivity equalitySymmetry applyEquality addEquality functionIsType lambdaEquality inrFormation dependent_pairFormation intEquality isect_memberEquality voidEquality computeAll lambdaFormation minusEquality imageElimination imageMemberEquality baseClosed inlFormation_alt productIsType equalityIsType1 multiplyEquality functionIsTypeImplies equalityIsType4 baseApply

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}L:\mBbbR{}.
    ((\mforall{}n:\mBbbN{}.  (r0  <  x[n]))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.r(n)  *  ((x[n]/x[n  +  1])  -  r1)  =  L
    {}\mRightarrow{}  (((r1  <  L)  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})  \mwedge{}  ((L  <  r1)  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))



Date html generated: 2019_10_29-AM-10_28_55
Last ObjectModification: 2019_04_02-AM-10_00_22

Theory : reals


Home Index