Nuprl Lemma : Raabe-test
∀x:ℕ ⟶ ℝ. ∀L:ℝ.
  ((∀n:ℕ. (r0 < x[n]))
  
⇒ lim n→∞.r(n) * ((x[n]/x[n + 1]) - r1) = L
  
⇒ (((r1 < L) 
⇒ Σn.x[n]↓) ∧ ((L < r1) 
⇒ Σn.x[n]↑)))
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
series-converges: Σn.x[n]↓
, 
converges-to: lim n→∞.x[n] = y
, 
rdiv: (x/y)
, 
rless: x < y
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
itermSubtract: left (-) right
, 
int_term_ind: int_term_ind, 
real_term_value: real_term_value(f;t)
, 
itermConstant: "const"
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
rsub: x - y
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right
, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rdiv: (x/y)
, 
converges-to: lim n→∞.x[n] = y
, 
le: A ≤ B
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
int_upper: {i...}
, 
rge: x ≥ y
Lemmas referenced : 
Kummer-criterion, 
int-to-real_wf, 
istype-nat, 
small-reciprocal-real, 
rless-implies-rless, 
rsub_wf, 
rless_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
converges-to_wf, 
rmul_wf, 
nat_properties, 
decidable__le, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
istype-le, 
real_wf, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul-limit, 
rsub-limit, 
nat_wf, 
satisfiable-full-omega-tt, 
constant-limit, 
req_weakening, 
rinv-converges-to-0, 
real_term_polynomial, 
converges-to_functionality, 
rmul_preserves_req, 
req_wf, 
radd_wf, 
rminus_wf, 
req-int, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
uiff_transitivity, 
req_functionality, 
rmul-rdiv-cancel2, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
rmul-one-both, 
rminus_functionality, 
uiff_transitivity3, 
squash_wf, 
true_wf, 
rminus-int, 
radd-int, 
sq_stable__less_than, 
rmul-identity1, 
rmul-is-positive, 
rmul-rsub-distrib, 
rsub_functionality, 
rmul_functionality, 
rmul-assoc, 
rmul_comm, 
req_inversion, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf, 
radd-preserves-req, 
rinv_wf2, 
itermMinus_wf, 
itermMultiply_wf, 
rminus-rdiv, 
rmul-int-rdiv, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_mul_lemma, 
rmul-int, 
rmul-rinv, 
Raabe-lemma, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
istype-less_than, 
istype-int_upper, 
le_witness_for_triv, 
upper_subtype_nat, 
not-le-2, 
sq_stable__le, 
add-swap, 
int_upper_properties, 
rleq_wf, 
rabs-difference-bound-rleq, 
rabs_wf, 
sq_stable__rleq, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
radd-preserves-rleq, 
rleq_functionality, 
rinv-as-rdiv, 
rinv-mul-as-rdiv, 
series-diverges_wf, 
rneq-int, 
radd-preserves-rless, 
rless_functionality, 
rleq_weakening_rless, 
series-diverges-tail-iff, 
harmonic-series-diverges, 
series-diverges_functionality, 
req-int-fractions, 
int_term_value_mul_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
closedConclusion, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
addEquality, 
functionIsType, 
lambdaEquality, 
inrFormation, 
dependent_pairFormation, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
lambdaFormation, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
inlFormation_alt, 
productIsType, 
equalityIsType1, 
multiplyEquality, 
functionIsTypeImplies, 
equalityIsType4, 
baseApply
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}L:\mBbbR{}.
    ((\mforall{}n:\mBbbN{}.  (r0  <  x[n]))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.r(n)  *  ((x[n]/x[n  +  1])  -  r1)  =  L
    {}\mRightarrow{}  (((r1  <  L)  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})  \mwedge{}  ((L  <  r1)  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))
Date html generated:
2019_10_29-AM-10_28_55
Last ObjectModification:
2019_04_02-AM-10_00_22
Theory : reals
Home
Index