Nuprl Lemma : rsub-limit

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  (lim n→∞.x[n]  lim n→∞.y[n]  lim n→∞.x[n] y[n] b)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rsub: y real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rsub: y so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] uall: [x:A]. B[x] prop:
Lemmas referenced :  radd-limit nat_wf rminus_wf rminus-limit converges-to_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality applyEquality hypothesisEquality hypothesis isectElimination independent_functionElimination functionEquality

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  b  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  -  y[n]  =  a  -  b)



Date html generated: 2016_05_18-AM-07_52_20
Last ObjectModification: 2015_12_28-AM-01_05_59

Theory : reals


Home Index