Nuprl Lemma : rsub-limit
∀x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  (lim n→∞.x[n] = a 
⇒ lim n→∞.y[n] = b 
⇒ lim n→∞.x[n] - y[n] = a - b)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rsub: x - y
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rsub: x - y
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
radd-limit, 
nat_wf, 
rminus_wf, 
rminus-limit, 
converges-to_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  b  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  -  y[n]  =  a  -  b)
Date html generated:
2016_05_18-AM-07_52_20
Last ObjectModification:
2015_12_28-AM-01_05_59
Theory : reals
Home
Index