Nuprl Lemma : rminus-limit
∀x:ℕ ⟶ ℝ. ∀a:ℝ. (lim n→∞.x[n] = a
⇒ lim n→∞.-(x[n]) = -(a))
Proof
Definitions occuring in Statement :
converges-to: lim n→∞.x[n] = y
,
rminus: -(x)
,
real: ℝ
,
nat: ℕ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
converges-to: lim n→∞.x[n] = y
,
member: t ∈ T
,
sq_exists: ∃x:{A| B[x]}
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
nat: ℕ
,
so_apply: x[s]
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
rsub: x - y
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
radd_comm,
rabs-difference-symmetry,
req_weakening,
rminus-rminus,
radd_functionality,
rabs_functionality,
rleq_functionality,
radd_wf,
real_wf,
converges-to_wf,
nat_plus_wf,
rless_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_plus_properties,
nat_properties,
rless-int,
int-to-real_wf,
rdiv_wf,
rminus_wf,
rsub_wf,
rabs_wf,
rleq_wf,
le_wf,
nat_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalHypSubstitution,
cut,
hypothesis,
dependent_functionElimination,
thin,
hypothesisEquality,
setElimination,
rename,
introduction,
dependent_set_memberEquality,
lemma_by_obid,
isectElimination,
sqequalRule,
lambdaEquality,
functionEquality,
applyEquality,
natural_numberEquality,
independent_isectElimination,
inrFormation,
because_Cache,
productElimination,
independent_functionElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll
Latex:
\mforall{}x:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mforall{}a:\mBbbR{}. (lim n\mrightarrow{}\minfty{}.x[n] = a {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.-(x[n]) = -(a))
Date html generated:
2016_05_18-AM-07_52_13
Last ObjectModification:
2016_01_17-AM-02_17_01
Theory : reals
Home
Index