Nuprl Lemma : rminus-limit

x:ℕ ⟶ ℝ. ∀a:ℝ.  (lim n→∞.x[n]  lim n→∞.-(x[n]) -(a))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rminus: -(x) real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T sq_exists: x:{A| B[x]} uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: nat: so_apply: x[s] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  radd_comm rabs-difference-symmetry req_weakening rminus-rminus radd_functionality rabs_functionality rleq_functionality radd_wf real_wf converges-to_wf nat_plus_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties nat_properties rless-int int-to-real_wf rdiv_wf rminus_wf rsub_wf rabs_wf rleq_wf le_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality setElimination rename introduction dependent_set_memberEquality lemma_by_obid isectElimination sqequalRule lambdaEquality functionEquality applyEquality natural_numberEquality independent_isectElimination inrFormation because_Cache productElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.-(x[n])  =  -(a))



Date html generated: 2016_05_18-AM-07_52_13
Last ObjectModification: 2016_01_17-AM-02_17_01

Theory : reals


Home Index