Nuprl Lemma : rminus-limit
∀x:ℕ ⟶ ℝ. ∀a:ℝ.  (lim n→∞.x[n] = a ⇒ lim n→∞.-(x[n]) = -(a))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
rminus: -(x), 
real: ℝ, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
converges-to: lim n→∞.x[n] = y, 
member: t ∈ T, 
sq_exists: ∃x:{A| B[x]}, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
nat: ℕ, 
so_apply: x[s], 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
rsub: x - y, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
radd_comm, 
rabs-difference-symmetry, 
req_weakening, 
rminus-rminus, 
radd_functionality, 
rabs_functionality, 
rleq_functionality, 
radd_wf, 
real_wf, 
converges-to_wf, 
nat_plus_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
nat_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rminus_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
le_wf, 
nat_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
introduction, 
dependent_set_memberEquality, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
because_Cache, 
productElimination, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.-(x[n])  =  -(a))
 Date html generated: 
2016_05_18-AM-07_52_13
 Last ObjectModification: 
2016_01_17-AM-02_17_01
Theory : reals
Home
Index