Nuprl Lemma : series-diverges-tail-iff

x:ℕ ⟶ ℝ. ∀N:ℕ.  n.x[N n]↑ ⇐⇒ Σn.x[n]↑)


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ real: nat: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  pointwise-req: x[k] y[k] for k ∈ [n,m] uiff: uiff(P;Q) rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) le: A ≤ B nat_plus: + squash: T sq_stable: SqStable(P) real: subtype_rel: A ⊆B lelt: i ≤ j < k sq_exists: x:{A| B[x]} rless: x < y guard: {T} int_seg: {i..j-} cand: c∧ B diverges: n.x[n]↑ series-diverges: Σn.x[n]↑ rev_implies:  Q top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rsum-difference req_weakening add-commutes rsum_functionality rabs_functionality rabs-difference-symmetry req_functionality rleq_weakening_equal rleq_functionality_wrt_implies rleq_weakening rsum-shift int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_seg_wf nat_plus_properties real_wf sq_stable__less_than int_seg_properties rsum_wf rsub_wf rabs_wf rleq_wf exists_wf all_wf int-to-real_wf rless_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_wf series-diverges_wf series-diverges-tail
Rules used in proof :  equalitySymmetry equalityTransitivity functionEquality imageElimination baseClosed imageMemberEquality because_Cache productEquality promote_hyp productElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination natural_numberEquality rename setElimination addEquality dependent_set_memberEquality functionExtensionality applyEquality lambdaEquality sqequalRule isectElimination independent_functionElimination independent_pairFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}N:\mBbbN{}.    (\mSigma{}n.x[N  +  n]\muparrow{}  \mLeftarrow{}{}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})



Date html generated: 2016_11_08-AM-09_01_25
Last ObjectModification: 2016_11_07-AM-11_54_08

Theory : reals


Home Index