Nuprl Lemma : series-diverges-tail-iff
∀x:ℕ ⟶ ℝ. ∀N:ℕ.  (Σn.x[N + n]↑ 
⇐⇒ Σn.x[n]↑)
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
Definitions unfolded in proof : 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
uiff: uiff(P;Q)
, 
rge: x ≥ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
guard: {T}
, 
int_seg: {i..j-}
, 
cand: A c∧ B
, 
diverges: n.x[n]↑
, 
series-diverges: Σn.x[n]↑
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rsum-difference, 
req_weakening, 
add-commutes, 
rsum_functionality, 
rabs_functionality, 
rabs-difference-symmetry, 
req_functionality, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rleq_weakening, 
rsum-shift, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_seg_wf, 
nat_plus_properties, 
real_wf, 
sq_stable__less_than, 
int_seg_properties, 
rsum_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
exists_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_wf, 
series-diverges_wf, 
series-diverges-tail
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
productEquality, 
promote_hyp, 
productElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}N:\mBbbN{}.    (\mSigma{}n.x[N  +  n]\muparrow{}  \mLeftarrow{}{}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})
Date html generated:
2016_11_08-AM-09_01_25
Last ObjectModification:
2016_11_07-AM-11_54_08
Theory : reals
Home
Index