Step
*
2
1
1
of Lemma
Raabe-test
1. x : ℕ ⟶ ℝ
2. lim n→∞.r(n) * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < r(n)) ∧ (c ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
⇒ Σn.x[n]↓
3. (∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) ≤ r0))
∧ Σn.(r1/r(N + n))↑))
⇒ Σn.x[n]↑
4. L : ℝ
5. ∀n:ℕ. (r0 < x[n])
6. r1 < L
7. k : ℕ+
8. (r1/r(k)) < (L - r1)
9. r0 < (L - r1 - (r1/r(k)))
10. N : ℕ
11. ∀n:ℕ. ((N ≤ n)
⇒ (|(r(n) * ((x[n]/x[n + 1]) - r1)) - L| ≤ (r1/r(k))))
12. ∀n:{N + 1...}. ((r0 < r(n)) ∧ (r0 < x[n]))
13. n : {N + 1...}
14. r0 < r(n)
15. r0 < x[n + 1]
⊢ (L - r1 - (r1/r(k))) ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1))
BY
{ ((Assert |(r(n) * ((x[n]/x[n + 1]) - r1)) - L| ≤ (r1/r(k)) BY
Auto)
THEN RWO "rabs-difference-bound-rleq" (-1)
THEN Auto) }
1
1. x : ℕ ⟶ ℝ
2. lim n→∞.r(n) * x[n] = r0
⇒ (∃c:{c:ℝ| r0 < c}
∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. ((r0 < r(n)) ∧ (c ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
⇒ Σn.x[n]↓
3. (∃N:ℕ
((∀n:{N...}. ((r0 < r(n)) ∧ (r0 < x[n])))
∧ (∀n:{N...}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) ≤ r0))
∧ Σn.(r1/r(N + n))↑))
⇒ Σn.x[n]↑
4. L : ℝ
5. ∀n:ℕ. (r0 < x[n])
6. r1 < L
7. k : ℕ+
8. (r1/r(k)) < (L - r1)
9. r0 < (L - r1 - (r1/r(k)))
10. N : ℕ
11. ∀n:ℕ. ((N ≤ n)
⇒ (|(r(n) * ((x[n]/x[n + 1]) - r1)) - L| ≤ (r1/r(k))))
12. ∀n:{N + 1...}. ((r0 < r(n)) ∧ (r0 < x[n]))
13. n : {N + 1...}
14. r0 < r(n)
15. r0 < x[n + 1]
16. (L - (r1/r(k))) ≤ (r(n) * ((x[n]/x[n + 1]) - r1))
17. (r(n) * ((x[n]/x[n + 1]) - r1)) ≤ (L + (r1/r(k)))
⊢ (L - r1 - (r1/r(k))) ≤ ((r(n) * x[n]/x[n + 1]) - r(n + 1))
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. lim n\mrightarrow{}\minfty{}.r(n) * x[n] = r0
{}\mRightarrow{} (\mexists{}c:\{c:\mBbbR{}| r0 < c\}
\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (c \mleq{} ((r(n) * x[n]/x[n + 1]) - r(n + 1)))))))
{}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{}
3. (\mexists{}N:\mBbbN{}
((\mforall{}n:\{N...\}. ((r0 < r(n)) \mwedge{} (r0 < x[n])))
\mwedge{} (\mforall{}n:\{N...\}. (((r(n) * x[n]/x[n + 1]) - r(n + 1)) \mleq{} r0))
\mwedge{} \mSigma{}n.(r1/r(N + n))\muparrow{}))
{}\mRightarrow{} \mSigma{}n.x[n]\muparrow{}
4. L : \mBbbR{}
5. \mforall{}n:\mBbbN{}. (r0 < x[n])
6. r1 < L
7. k : \mBbbN{}\msupplus{}
8. (r1/r(k)) < (L - r1)
9. r0 < (L - r1 - (r1/r(k)))
10. N : \mBbbN{}
11. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|(r(n) * ((x[n]/x[n + 1]) - r1)) - L| \mleq{} (r1/r(k))))
12. \mforall{}n:\{N + 1...\}. ((r0 < r(n)) \mwedge{} (r0 < x[n]))
13. n : \{N + 1...\}
14. r0 < r(n)
15. r0 < x[n + 1]
\mvdash{} (L - r1 - (r1/r(k))) \mleq{} ((r(n) * x[n]/x[n + 1]) - r(n + 1))
By
Latex:
((Assert |(r(n) * ((x[n]/x[n + 1]) - r1)) - L| \mleq{} (r1/r(k)) BY
Auto)
THEN RWO "rabs-difference-bound-rleq" (-1)
THEN Auto)
Home
Index