Step
*
of Lemma
Riemann-sum_wf
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ]. ∀[k:ℕ+]. (Riemann-sum(f;a;b;k) ∈ ℝ)
BY
{ (Auto
THEN Unfold `Riemann-sum` 0
THEN DVar `b'⋅
THEN (Assert icompact([a, b]) BY
EAuto 1)
THEN (GenConclTerm ⌜uniform-partition([a, b];k)⌝⋅ THENA Auto)
THEN CallByValueReduce 0
THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. k : ℕ+
6. icompact([a, b])
7. v : partition([a, b])@i
8. uniform-partition([a, b];k) = v ∈ partition([a, b])@i
⊢ frs-non-dec(full-partition([a, b];uniform-partition([a, b];k)))
Latex:
Latex:
\mforall{}[a:\mBbbR{}]. \mforall{}[b:\{b:\mBbbR{}| a \mleq{} b\} ]. \mforall{}[f:[a, b] {}\mrightarrow{}\mBbbR{}]. \mforall{}[k:\mBbbN{}\msupplus{}]. (Riemann-sum(f;a;b;k) \mmember{} \mBbbR{})
By
Latex:
(Auto
THEN Unfold `Riemann-sum` 0
THEN DVar `b'\mcdot{}
THEN (Assert icompact([a, b]) BY
EAuto 1)
THEN (GenConclTerm \mkleeneopen{}uniform-partition([a, b];k)\mkleeneclose{}\mcdot{} THENA Auto)
THEN CallByValueReduce 0
THEN Auto)
Home
Index