Step * of Lemma Riemann-sums-converge-ext

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  Riemann-sum(f;a;b;k 1)↓ as k→∞
BY
Extract of Obid: Riemann-sums-converge
  normalizes to:
  
  λa,b,f,mc. <accelerate(2;λn.(Riemann-sum(f;a;b;if rless-case(r0;mc 
                                                                  canonical-bound(|r(2 n)
                                                                  (b a)|);rlessw(r0;mc 
                                                                                        canonical-bound(|r(2 n)
                                                                                        (b a)|));b a)
                               then (canonical-bound(|(b a/mc canonical-bound(|r(2 n) (b a)|))|) 1) 1
                               else 1
                               fi 
                               n))
             , λk.if rless-case(r0;mc canonical-bound(|r(2 k) (b a)|);rlessw(r0;mc 
                                                                                            canonical-bound(|r(2
                                                                                            4
                                                                                            k)
                                                                                            (b a)|));b a)
                  then (canonical-bound(|(b a/mc canonical-bound(|r(2 k) (b a)|))|) 1) 1
                  else 1
                  fi 
             >
  
  not unfolding  Riemann-sum canonical-bound radd rabs rsub rdiv rmul rless-case int-to-real rlessw accelerate
  finishing with Auto }


Latex:


Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    Riemann-sum(f;a;b;k  +  1)\mdownarrow{}  as  k\mrightarrow{}\minfty{}


By


Latex:
...




Home Index