Nuprl Lemma : Riemann-sums-converge-ext
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  Riemann-sum(f;a;b;k + 1)↓ as k→∞
Proof
Definitions occuring in Statement : 
Riemann-sum: Riemann-sum(f;a;b;k), 
continuous: f[x] continuous for x ∈ I, 
rfun: I ⟶ℝ, 
rccint: [l, u], 
converges: x[n]↓ as n→∞, 
rleq: x ≤ y, 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
sq_stable__rless, 
sq_stable__and, 
rless-cases, 
integer-bound, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
squash: ↓T, 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
has-value: (a)↓, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
strict4: strict4(F), 
uimplies: b supposing a, 
top: Top, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
Riemann-sums-cauchy, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
converges-iff-cauchy, 
Riemann-sums-converge, 
member: t ∈ T
Lemmas referenced : 
sq_stable__rless, 
sq_stable__and, 
rless-cases, 
integer-bound, 
Riemann-sums-cauchy, 
converges-iff-cauchy, 
Riemann-sums-converge
Rules used in proof : 
inlFormation, 
imageElimination, 
imageMemberEquality, 
intEquality, 
inrFormation, 
exceptionSqequal, 
addExceptionCases, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
productElimination, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueAdd, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    Riemann-sum(f;a;b;k  +  1)\mdownarrow{}  as  k\mrightarrow{}\minfty{}
Date html generated:
2016_07_08-PM-05_59_51
Last ObjectModification:
2016_07_05-PM-03_13_13
Theory : reals
Home
Index