Nuprl Lemma : integer-bound
∀x:ℝ. ∃n:ℕ+. (|x| ≤ r(n))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
real: ℝ
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
le: A ≤ B
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
canonical-bound_wf, 
rabs_wf, 
subtype_rel_set, 
int_upper_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
istype-int_upper, 
subtype_rel_sets_simple, 
istype-int, 
less_than_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
istype-void, 
zero-add, 
le-add-cancel, 
istype-le, 
canonical-bound-property, 
rleq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
independent_isectElimination, 
intEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
universeIsType
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}\msupplus{}.  (|x|  \mleq{}  r(n))
Date html generated:
2019_10_29-AM-10_09_35
Last ObjectModification:
2019_01_31-AM-09_51_05
Theory : reals
Home
Index