Nuprl Lemma : integer-bound

x:ℝ. ∃n:ℕ+(|x| ≤ r(n))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: real: nat: nat_plus: + int_upper: {i...} so_apply: x[s] uimplies: supposing a implies:  Q and: P ∧ Q le: A ≤ B cand: c∧ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  canonical-bound_wf rabs_wf subtype_rel_set int_upper_wf nat_plus_wf le_wf absval_wf istype-int_upper subtype_rel_sets_simple istype-int less_than_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes istype-void zero-add le-add-cancel istype-le canonical-bound-property rleq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_pairFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality natural_numberEquality sqequalRule lambdaEquality_alt functionEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry multiplyEquality independent_isectElimination intEquality independent_pairFormation productElimination dependent_functionElimination unionElimination voidElimination independent_functionElimination isect_memberEquality_alt universeIsType

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}\msupplus{}.  (|x|  \mleq{}  r(n))



Date html generated: 2019_10_29-AM-10_09_35
Last ObjectModification: 2019_01_31-AM-09_51_05

Theory : reals


Home Index