Nuprl Lemma : canonical-bound-property

x:ℝ((r(-canonical-bound(x)) ≤ x) ∧ (x ≤ r(canonical-bound(x))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y canonical-bound: canonical-bound(r) int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q minus: -n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q int-to-real: r(n) rleq: x ≤ y rsub: y rnonneg: rnonneg(x) rminus: -(x) radd: b accelerate: accelerate(k;f) and: P ∧ Q has-value: (a)↓ uimplies: supposing a nat_plus: + squash: T prop: real: int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o nat: absval: |i| sq_stable: SqStable(P) le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b uiff: uiff(P;Q) subtract: m ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  canonical-bound_wf value-type-has-value int-value-type le_wf squash_wf true_wf istype-int reg-seq-list-add-as-l_sum cons_wf nat_plus_wf nil_wf nat_plus_properties int_upper_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than subtype_base_sq int_subtype_base subtype_rel_self iff_weakening_equal map_cons_lemma map_nil_lemma l_sum_cons_lemma l_sum_nil_lemma mul_cancel_in_le div_rem_sum2 nequal_wf rem_bounds_absval absval_wf real_wf sq_stable__le sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma less_than_wf absval_pos istype-le absval_ifthenelse lt_int_wf sq_stable__all le_witness_for_triv itermAdd_wf int_term_value_add_lemma assert_wf bnot_wf not_wf istype-assert minus-is-int-iff itermMinus_wf int_term_value_minus_lemma false_wf add-associates mul-associates minus-one-mul mul-commutes mul-swap zero-add add-commutes add-swap bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType sqequalRule callbyvalueReduce sqleReflexivity independent_pairFormation intEquality independent_isectElimination multiplyEquality natural_numberEquality setElimination rename applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType minusEquality divideEquality functionEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination instantiate cumulativity equalityIstype baseClosed sqequalBase imageMemberEquality universeEquality productElimination because_Cache addEquality closedConclusion remainderEquality applyLambdaEquality functionIsTypeImplies functionIsType pointwiseFunctionality promote_hyp baseApply

Latex:
\mforall{}x:\mBbbR{}.  ((r(-canonical-bound(x))  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r(canonical-bound(x))))



Date html generated: 2019_10_29-AM-09_35_19
Last ObjectModification: 2019_01_18-AM-11_03_33

Theory : reals


Home Index