Nuprl Lemma : Riemann-sums-cauchy

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  cauchy(k.Riemann-sum(f;a;b;k 1))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] cauchy: cauchy(n.x[n]) rleq: x ≤ y real: so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  subtype_rel: A ⊆B so_apply: x[s] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T cauchy: cauchy(n.x[n]) all: x:A. B[x] top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B or: P ∨ Q nat_plus: + squash: T uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) implies:  Q sq_stable: SqStable(P) rsub: y sq_exists: x:{A| B[x]} rless: x < y guard: {T} rneq: x ≠ y i-member: r ∈ I rccint: [l, u] i-approx: i-approx(I;n) true: True less_than': less_than'(a;b) less_than: a < b continuous: f[x] continuous for x ∈ I rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B ge: i ≥  subtract: m real: nat: rge: x ≥ y i-length: |I|
Lemmas referenced :  r-triangle-inequality2 rabs-difference-symmetry radd_functionality_wrt_rleq Riemann-sum-rleq rsub_functionality rabs-Riemann-sum Riemann-sum-rsub rabs_functionality rleq_weakening rleq_transitivity uimplies_transitivity Riemann-sum-constant i-member-diff-bound right_endpoint_rccint_lemma left_endpoint_rccint_lemma rless_transitivity2 rmul-one-both rmul-rdiv-cancel rmul-ac rmul-assoc req_functionality req_wf equal_wf rmul-int rleq_weakening_equal rleq_functionality_wrt_implies rmul_comm itermAdd_wf int_term_value_add_lemma rmul_preserves_rleq2 Riemann-sums-near less-iff-le minus-minus add-swap radd-int rmul_functionality rmul-distrib2 rmul-identity1 req_inversion radd-assoc rminus-as-rmul req_transitivity rmul-zero-both rmul-rdiv-cancel2 rabs-of-nonneg rless_functionality radd-preserves-rless rmul_preserves_rleq rleq_weakening_rless subtract_wf sq_stable__less_than itermSubtract_wf int_term_value_subtract_lemma le_wf nat_wf Riemann-sum_wf false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel nat_properties rless-cases sq_stable__all sq_stable__rless sq_stable__and less_than_wf rccint-icompact icompact_wf i-approx_wf all_wf sq_exists_wf rabs_wf member_rccint_lemma rdiv_wf rless-int decidable__lt rless_wf sq_exists_subtype_rel less_than'_wf squash_wf radd-zero-both radd-rminus-assoc req_weakening radd_functionality radd_comm rleq_functionality uiff_transitivity sq_stable__rleq int-to-real_wf rsub_wf radd-preserves-rleq rmul-nonneg rleq-int nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf and_wf integer-bound rmul_wf radd_wf rminus_wf nat_plus_wf continuous_wf rccint_wf subtype_rel_self rfun_wf real_wf i-member_wf set_wf rleq_wf
Rules used in proof :  setEquality applyEquality lambdaEquality sqequalRule setElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis lemma_by_obid cut rename lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination dependent_functionElimination inlFormation multiplyEquality imageElimination baseClosed imageMemberEquality independent_isectElimination productElimination because_Cache introduction independent_functionElimination natural_numberEquality minusEquality equalitySymmetry equalityTransitivity inrFormation functionEquality productEquality dependent_set_memberEquality independent_pairEquality axiomEquality dependent_set_memberFormation addEquality promote_hyp isect_memberFormation equalityEquality

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].
    cauchy(k.Riemann-sum(f;a;b;k  +  1))



Date html generated: 2016_05_18-AM-10_42_44
Last ObjectModification: 2016_01_17-AM-00_32_09

Theory : reals


Home Index