Nuprl Lemma : Riemann-sums-near

a,b:ℝ.
  ((a < b)
   (∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. ∀k,m,n:ℕ+.
        (((b a/r(k)) ≤ (mc n))
         ((b a/r(m)) ≤ (mc n))
         (|Riemann-sum(f;a;b;k) Riemann-sum(f;a;b;m)| ≤ ((r(2)/r(n)) (b a))))))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  label: ...$L... t i-member: r ∈ I rfun: I ⟶ℝ so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B true: True less_than': less_than'(a;b) squash: T less_than: a < b continuous: f[x] continuous for x ∈ I top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y rev_implies:  Q or: P ∨ Q rneq: x ≠ y nat_plus: + prop: uimplies: supposing a guard: {T} uall: [x:A]. B[x] iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q rccint: [l, u] i-approx: i-approx(I;n) implies:  Q member: t ∈ T all: x:A. B[x] i-length: |I| uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) icompact: icompact(I) rge: x ≥ y
Lemmas referenced :  rmul-rdiv-cancel rmul-ac rmul_comm rmul-assoc req_functionality rmul-int-rdiv radd-int rmul-identity1 radd_functionality req_transitivity rmul-distrib2 req_inversion rmul_functionality uiff_transitivity rmul_preserves_rleq req_wf rleq_functionality_wrt_implies Riemann-sum_wf radd_wf mul_nat_plus rleq_weakening_equal r-triangle-inequality2 rmul_wf rabs-difference-symmetry radd_functionality_wrt_rleq mul-commutes req_weakening mesh-uniform-partition rleq_functionality partition-mesh_wf uniform-partition_wf i-length_wf right_endpoint_rccint_lemma left_endpoint_rccint_lemma Riemann-sum-refinement rccint-icompact rleq_weakening_rless rleq_wf rdiv_wf rsub_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf less_than_wf icompact_wf i-approx_wf rccint_wf all_wf nat_plus_wf sq_exists_wf real_wf i-member_wf rabs_wf member_rccint_lemma and_wf continuous_wf subtype_rel_self rfun_wf
Rules used in proof :  setEquality functionEquality productEquality baseClosed imageMemberEquality introduction dependent_set_memberEquality applyEquality computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination natural_numberEquality because_Cache inrFormation rename setElimination independent_pairFormation independent_isectElimination isectElimination productElimination sqequalRule independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lemma_by_obid cut equalitySymmetry equalityTransitivity equalityEquality multiplyEquality addEquality

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].  \mforall{}k,m,n:\mBbbN{}\msupplus{}.
                (((b  -  a/r(k))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  ((b  -  a/r(m))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  (|Riemann-sum(f;a;b;k)  -  Riemann-sum(f;a;b;m)|  \mleq{}  ((r(2)/r(n))  *  (b  -  a))))))



Date html generated: 2016_05_18-AM-10_41_15
Last ObjectModification: 2016_01_17-AM-00_24_26

Theory : reals


Home Index