Nuprl Lemma : Riemann-sums-near
∀a,b:ℝ.
  ((a < b)
  
⇒ (∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. ∀k,m,n:ℕ+.
        (((b - a/r(k)) ≤ (mc 1 n))
        
⇒ ((b - a/r(m)) ≤ (mc 1 n))
        
⇒ (|Riemann-sum(f;a;b;k) - Riemann-sum(f;a;b;m)| ≤ ((r(2)/r(n)) * (b - a))))))
Proof
Definitions occuring in Statement : 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
label: ...$L... t
, 
i-member: r ∈ I
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
continuous: f[x] continuous for x ∈ I
, 
top: Top
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
rccint: [l, u]
, 
i-approx: i-approx(I;n)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
i-length: |I|
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
icompact: icompact(I)
, 
rge: x ≥ y
Lemmas referenced : 
rmul-rdiv-cancel, 
rmul-ac, 
rmul_comm, 
rmul-assoc, 
req_functionality, 
rmul-int-rdiv, 
radd-int, 
rmul-identity1, 
radd_functionality, 
req_transitivity, 
rmul-distrib2, 
req_inversion, 
rmul_functionality, 
uiff_transitivity, 
rmul_preserves_rleq, 
req_wf, 
rleq_functionality_wrt_implies, 
Riemann-sum_wf, 
radd_wf, 
mul_nat_plus, 
rleq_weakening_equal, 
r-triangle-inequality2, 
rmul_wf, 
rabs-difference-symmetry, 
radd_functionality_wrt_rleq, 
mul-commutes, 
req_weakening, 
mesh-uniform-partition, 
rleq_functionality, 
partition-mesh_wf, 
uniform-partition_wf, 
i-length_wf, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
Riemann-sum-refinement, 
rccint-icompact, 
rleq_weakening_rless, 
rleq_wf, 
rdiv_wf, 
rsub_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
less_than_wf, 
icompact_wf, 
i-approx_wf, 
rccint_wf, 
all_wf, 
nat_plus_wf, 
sq_exists_wf, 
real_wf, 
i-member_wf, 
rabs_wf, 
member_rccint_lemma, 
and_wf, 
continuous_wf, 
subtype_rel_self, 
rfun_wf
Rules used in proof : 
setEquality, 
functionEquality, 
productEquality, 
baseClosed, 
imageMemberEquality, 
introduction, 
dependent_set_memberEquality, 
applyEquality, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
because_Cache, 
inrFormation, 
rename, 
setElimination, 
independent_pairFormation, 
independent_isectElimination, 
isectElimination, 
productElimination, 
sqequalRule, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lemma_by_obid, 
cut, 
equalitySymmetry, 
equalityTransitivity, 
equalityEquality, 
multiplyEquality, 
addEquality
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].  \mforall{}k,m,n:\mBbbN{}\msupplus{}.
                (((b  -  a/r(k))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  ((b  -  a/r(m))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  (|Riemann-sum(f;a;b;k)  -  Riemann-sum(f;a;b;m)|  \mleq{}  ((r(2)/r(n))  *  (b  -  a))))))
Date html generated:
2016_05_18-AM-10_41_15
Last ObjectModification:
2016_01_17-AM-00_24_26
Theory : reals
Home
Index