Nuprl Lemma : uniform-partition_wf

[I:Interval]. ∀[k:ℕ+]. (uniform-partition(I;k) ∈ partition(I)) supposing icompact(I)


Proof




Definitions occuring in Statement :  uniform-partition: uniform-partition(I;k) partition: partition(I) icompact: icompact(I) interval: Interval nat_plus: + uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uniform-partition: uniform-partition(I;k) partition: partition(I) nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k partitions: partitions(I;p) cand: c∧ B subtype_rel: A ⊆B icompact: icompact(I) frs-non-dec: frs-non-dec(L) rless: x < y sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T real: le: A ≤ B less_than: a < b true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  rleq: x ≤ y rnonneg: rnonneg(x) itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y) less_than': less_than'(a;b) rge: x ≥ y last: last(L)
Lemmas referenced :  mklist_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rdiv_wf radd_wf rmul_wf left-endpoint_wf right-endpoint_wf rless-int int_seg_properties decidable__lt rless_wf int-to-real_wf icompact-endpoints-rleq icompact-endpoints less_than_wf length_wf rsub_wf partitions_wf nat_plus_wf icompact_wf interval_wf mklist_length sq_stable__less_than real_wf int_seg_wf lelt_wf rleq_wf squash_wf true_wf mklist_select iff_weakening_equal req_wf req-int decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma uiff_transitivity req_functionality rsub-int radd_functionality req_weakening radd-int rleq_functionality rdiv_functionality rmul_functionality equal_wf rmul-distrib2 nat_wf rmul_preserves_rleq rinv_wf2 rmul_preserves_rleq2 rleq-int nat_properties less_than'_wf rleq-implies-rleq real_term_polynomial itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 req_transitivity rmul-rinv3 false_wf rminus_wf rleq_weakening itermMinus_wf real_term_value_minus_lemma rminus_functionality rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq subtract-add-cancel trivial-int-eq1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache setElimination rename hypothesis natural_numberEquality hypothesisEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll inrFormation productElimination independent_functionElimination lambdaFormation addEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality imageMemberEquality baseClosed imageElimination universeEquality applyLambdaEquality independent_pairEquality minusEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[k:\mBbbN{}\msupplus{}].  (uniform-partition(I;k)  \mmember{}  partition(I))  supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_43_42
Last ObjectModification: 2017_07_28-AM-07_57_56

Theory : reals


Home Index