Nuprl Lemma : mesh-uniform-partition

[I:Interval]. ∀[k:ℕ+]. (partition-mesh(I;uniform-partition(I;k)) (|I|/r(k))) supposing icompact(I)


Proof




Definitions occuring in Statement :  uniform-partition: uniform-partition(I;k) partition-mesh: partition-mesh(I;p) icompact: icompact(I) i-length: |I| interval: Interval rdiv: (x/y) req: y int-to-real: r(n) nat_plus: + uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partition-mesh: partition-mesh(I;p) frs-mesh: frs-mesh(p) nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: full-partition: full-partition(I;p) subtype_rel: A ⊆B partition: partition(I) so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k uniform-partition: uniform-partition(I;k) nat: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff icompact: icompact(I) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 less_than: a < b subtract: m i-length: |I|
Lemmas referenced :  req_witness partition-mesh_wf uniform-partition_wf rdiv_wf i-length_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf icompact_wf interval_wf lt_int_wf length_wf real_wf full-partition_wf bool_wf equal-wf-T-base assert_wf less_than_wf length_of_cons_lemma length_nil non_neg_length nil_wf partition_wf length_cons right-endpoint_wf cons_wf append_wf length_append subtype_rel_set list_wf top_wf partitions_wf subtype_rel_list length-append length_of_nil_lemma intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma le_int_wf le_wf bnot_wf rmaximum-constant subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma rsub_wf select_wf int_seg_properties int_seg_wf mklist_length subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rmul_preserves_req rmul_wf radd_wf rminus_wf rinv_wf2 uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf req_functionality real_term_polynomial itermMultiply_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma req-iff-rsub-is-0 req_transitivity rmul_functionality req_weakening rmul-rinv left-endpoint_wf lelt_wf add-member-int_seg2 add-subtract-cancel radd_functionality rminus_functionality rmul_comm uniform-partition-point req_wf req_inversion radd-int rsub_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis setElimination rename sqequalRule inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry baseClosed applyEquality dependent_set_memberEquality addEquality lambdaFormation equalityElimination

Latex:
\mforall{}[I:Interval]
    \mforall{}[k:\mBbbN{}\msupplus{}].  (partition-mesh(I;uniform-partition(I;k))  =  (|I|/r(k)))  supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_44_24
Last ObjectModification: 2017_07_28-AM-07_58_20

Theory : reals


Home Index